Il cielo come laboratorio - 2025

DOPPIO AMMASSO DI PERSEO

Analisi diagrammi colore-magnitudine

Bisogno Antonio Mattia, Busetto Matteo, Heinz Mattia, Marson Eva Jane, Sartori Arianna, Trivellato Rachele, Vicario Nicolo'

AMMASSI STELLARI

Gli ammassi stellari sono delle strutture costituite da numerose stelle, nate insieme da una nube molecolare gigante, e ancora unite dalla reciproca attrazione gravitazionale.

NGC 884 & NGC 869

Sono 2 ammassi aperti molto
vicini tra di loro ed appartengono
alla costellazione di Perseo.
All'interno si trovano stelle
relativamente giovani e costituite
da elementi chimici simili.

PROCEDIMENTO

1 Analisi dell'ammasso con Source-Extractor

5 Creazione del diagramma colore-magnitudine

2 Visualizzazione delle foto con ds9

6 Confronto con le isocrone fornite

(3) Utilizzo di TOPCAT per il filtraggio dei dati

- 7 Calcolo di metallicità, età e distanza
- 4 Calcolo delle costanti di calibrazione delle magnitudini

ANALISI DELL'AMMASSO CON SOURCE-EXTRACTOR

DETECT_TYPE CCD
DETECT_MINAREA 5

DETECT_THRESH 1.5
ANALYSIS_THRESH 1.5

FILTER \

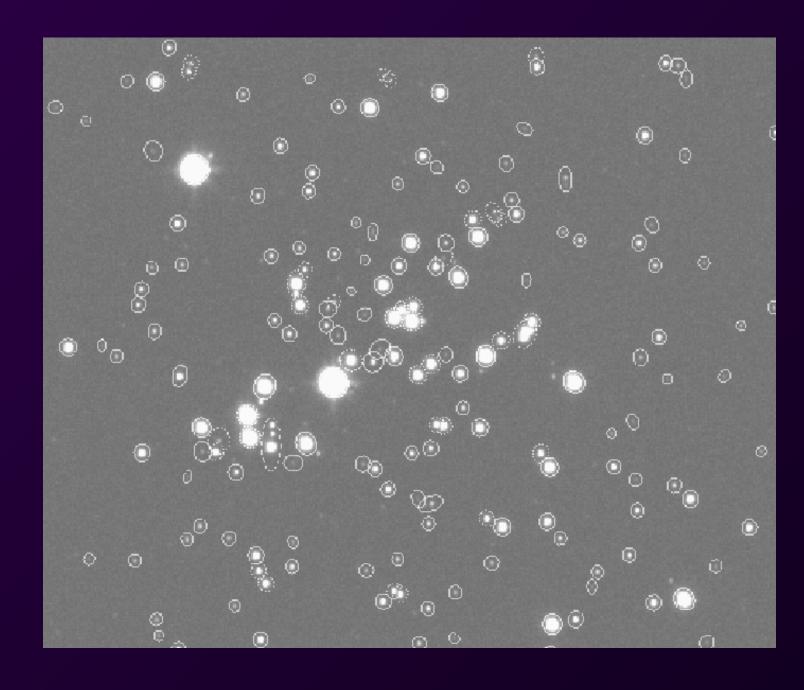
FILTER_NAME default.conv

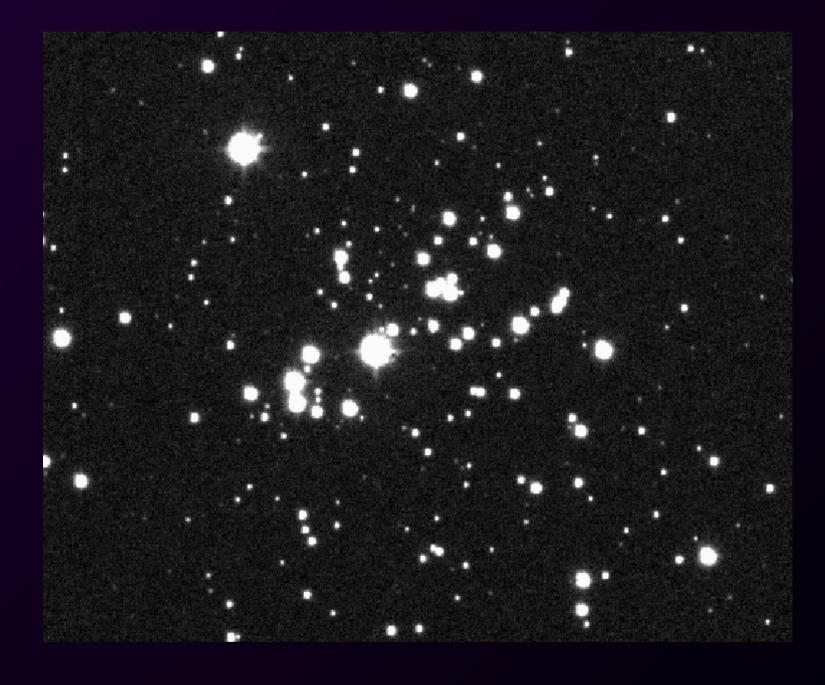
DEBLEND_NTHRESH 32

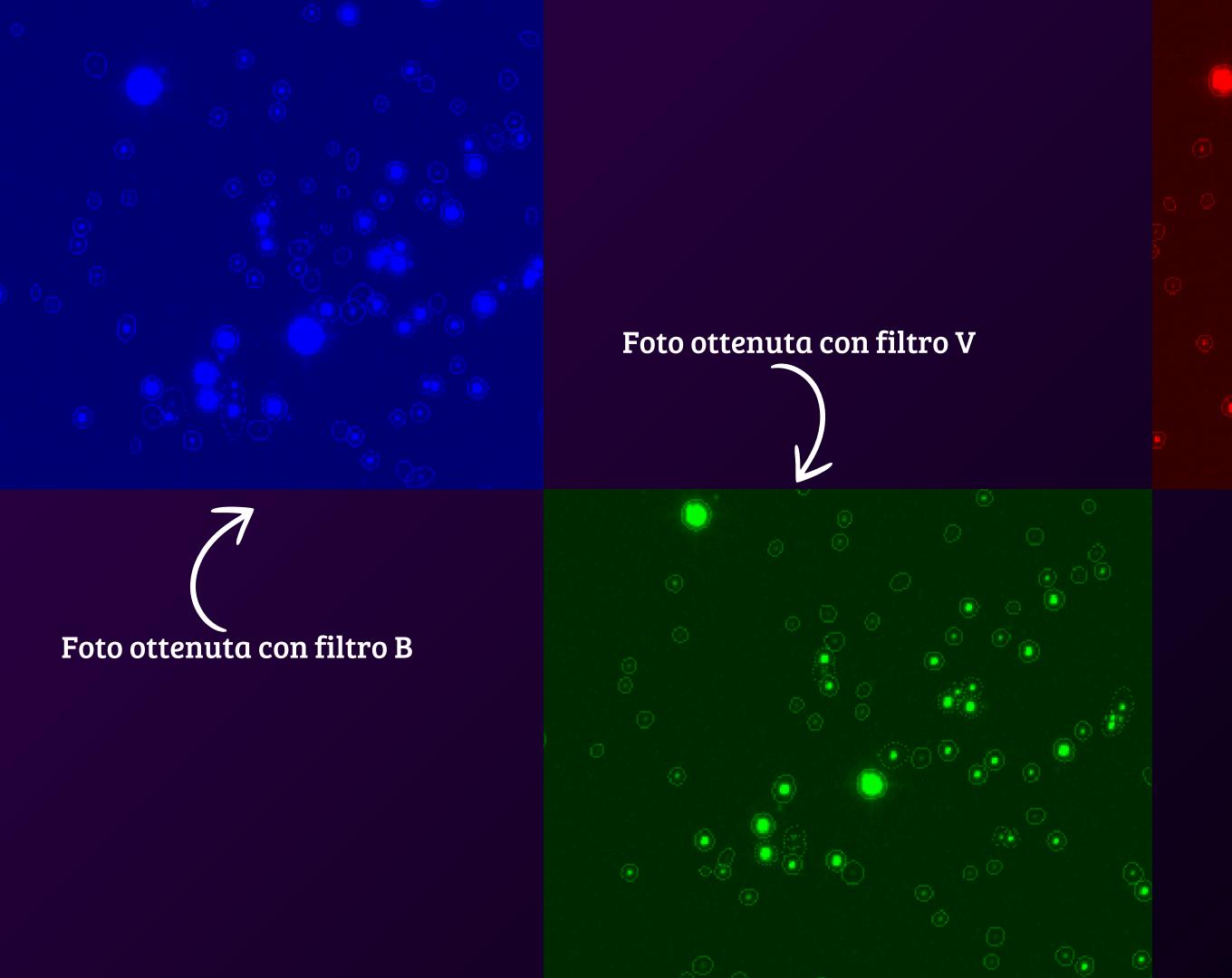
DEBLEND MINCONT 0.005

Source-Extractor è un software che permette di indivudare le sorgenti luminose che soddisfano determinati parametri per essere considerate stelle, all'interno di un'immagine catturata da telescopio.

A sinistra possiamo vedere i valori fondamentali che devono essere modificati al fine di ottenere risultati ottimali.

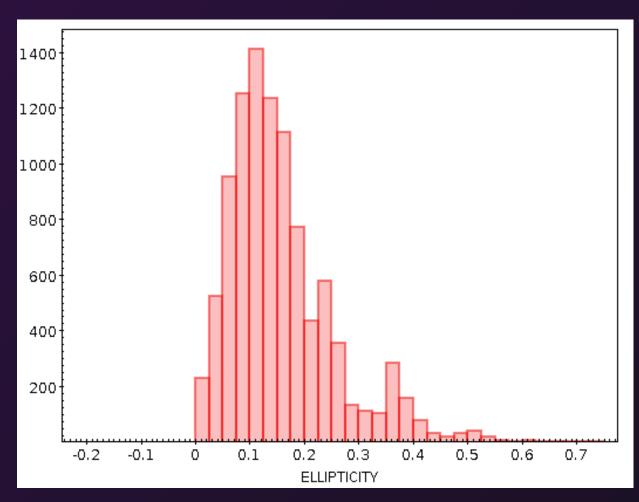

ANALISI DELL'AMMASSO CON SOURCE-EXTRACTOR

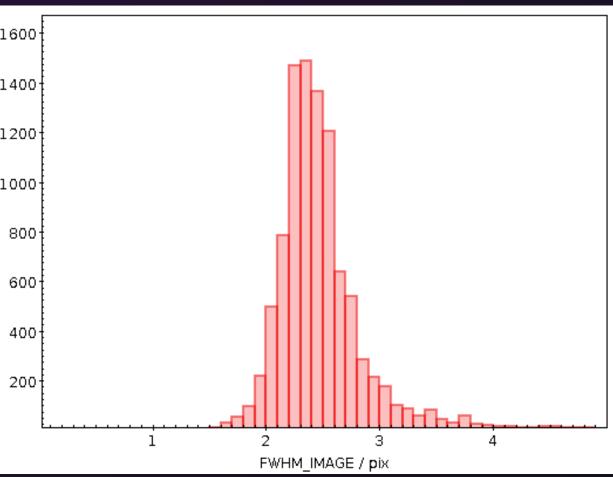

Successivamente crea un catalogo contenente tutte le stelle individuate e ne indica diversi valori:


Table I	Table Browser for 2: B60.cat							
	NUMBER	FLUX_BEST	X_IMAGE	Y_IMAGE	ALPHA_J20	DELTA_J20	FWHM_IMA	ELLIPTICITY
1	1	5.42891E5	2794.36	58.3817	34.90942	56.82057	2.18	0.047
2	2	2.08817E6	1928.07	36.7009	35.28877	56.81678	3.88	0.019
3	3	2.23481E5	2770.44	35.0532	34.91999	56.81504	3.87	0.211
4	4	2.15412E5	1314.55	41.1916	35.55737	56.81815	2.06	0.05
5	5	16642.	3683.47	23.1798	34.52042	56.8095	1.9	0.071
6	6	17712.	3421.57	18.5897	34.63507	56.80931	2.03	0.046
7	7	7106.09	1474.96	19.5608	35.48715	56.81295	2.17	0.061
8	8	5379.11	3602.73	18.3351	34.55578	56.80863	3.89	0.381
9	9	6487.9	160.712	18.6776	36.06246	56.81176	2.02	0.08
10	10	7973.97	3383.2	17.8061	34.65187	56.80924	1.84	0.101
11	11	30905.	1154.5	16.2593	35.62743	56.81216	2.03	0.05
12	12	3486.73	3642.8	16.4215	34.53826	56.80803	1.95	0.038
13	13	37894.	2986.56	13.2339	34.82549	56.80929	2.09	0.087
14	14	4832.18	3061.53	14.1658	34.79267	56.80932	2.05	0.13
15	15	2399.03	2059.56	14.3209	35.23125	56.81128	3.54	0.35
16	16	1371.34	184.719	14.7217	36.05194	56.81085	2.01	0.175
17	17	3805.26	2446.36	13.4082	35.06193	56.8105	2.38	0.168
18	18	4111.94	2177.8	13.2671	35.17949	56.81088	2.29	0.113
19	19	1733.66	1403.71	6.5945	35.51834	56.80986	2.23	0.026
Total: 8,175 Visible: 8,175 Selected: 0								

VISUALIZZAZIONE DELLE STELLE CON DS9

Visualizzazione del risultato tramite il software DS9 per stabilire i giusti parametri da attribuire a sourceextractor. L'immagine ricavata corrisponde a quella di partenza con le stelle individuate messe in evidenza da cerchi e ellissi.





UTILIZZO DI TOPCAT PER IL FILTRAGGIO DEI DATI

TOPCAT è un software con diverse funzioni tra cui quella di filtraggio delle stelle individuate con Source-Extractor in base all'ellitticità e al Full-Width Half-Maximum ("piena ampiezza a meta' del massimo"). In questo modo è possibile escludere insiemi di più stelle non divise e altri corpi non stellari.

CALCOLO DELLE COSTANTI DI CALIBRAZIONE DELLE MAGNITUDINI

Cercare nel database astronomico SIMBAD le magnitudini apparenti in B,V,R e le coordinate in ascensione retta e declinazione di quattro stelle note dell'ammasso. In base alle coordinate individuare le stelle nelle immagini e risalire al loro flusso dalle tabelle dei dati filtrati, grazie a cui si calcolano le magnitudini strumentali $m_{\rm s}$:

$$2.5 \times \log \left(\frac{FLUX}{T_{exp}} \right)$$

Utilizzando questi dati si ricava la costante di calibrazione m_o attraverso la seguente formula:

$$m = m_0 - m_s$$

Table E	Browser	for 2: R60 cat		
	NUMBER	FLUX_BEST	ALPHA_J20	DELTA_J20
1	1	5.42891E5	34.90942	56.82057
2	2	2.08817E6	35.28877	56.81678
3	3	2.23481E5	34.91999	56.81504
4	4	2.15412E5	35.55737	56.81815
5	5	16642.	34.52042	56.8095
6	6	17712.	34.63507	56.80931
7	7	7106.09	35.48715	56.81295
8	8	5379.11	34.55578	56.80863
9	9	6487.9	36.06246	56.81176
10	10	7973.97	34.65187	56.80924
11	11	30905.	35.62743	56.81216
12	12	3486.73	34.53826	56.80803
13	13	37894.	34.82549	56.80929
14	14	4832.18	34.79267	56.80932
15	15	2399.03	35.23125	56.81128
16	16	1371.34	36.05194	56.81085
17	17	3805.26	35.06193	56.8105
18	18	4111.94	35.17949	56.81088
19	19	1733.66	35.51834	56.80986
Total:	8,175 \	/isible: 8,175		

CALCOLO DELLE COSTANTI DI CALIBRAZIONE DELLE MAGNITUDINI

Si calcola poi la media delle costanti di calibrazione delle quattro stelle nei diversi tempi di esposizione e nei diversi filtri.

In seguito alcuni esempi di medie ottenute:

$$B_0 = 21.757$$

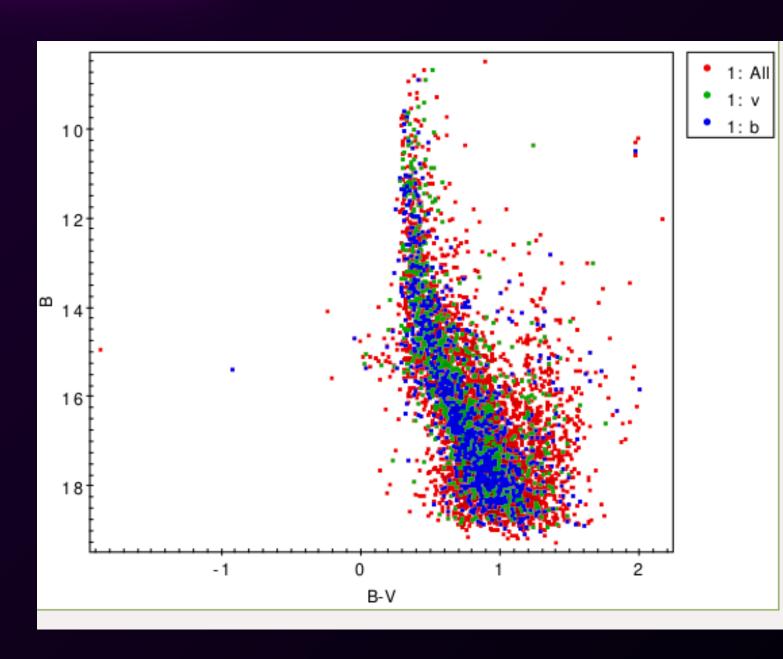
$$V_0 = 21.595$$

$$R_0 = 21.482$$

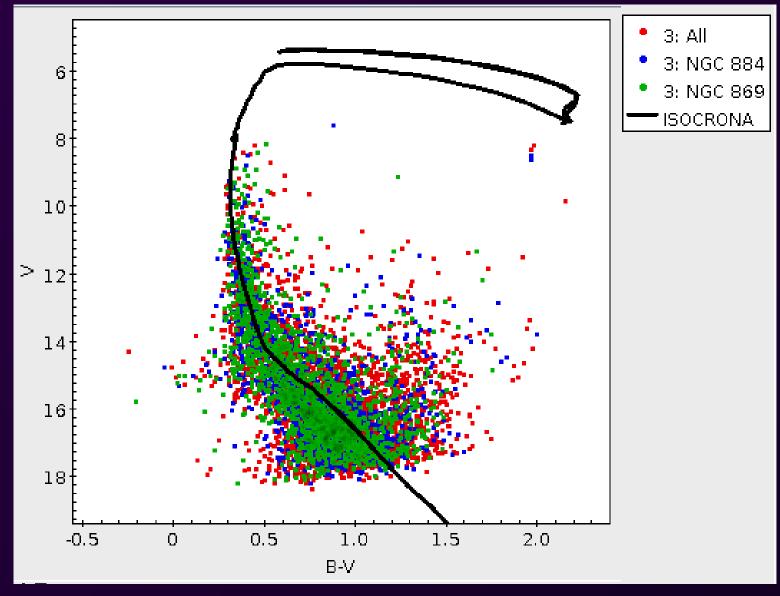
Rtot						
Name	\$ID	Class	Units	Description		
Index	\$0	Long		Table row index		
NUMBER	\$1	Integer		Running object number		
FLUX_BEST	\$2	Float	ct	Best of FLUX_AUTO and FLUX_ISOCOR		
X_IMAGE	\$3	Float	pix	Object position along x		
Y_IMAGE	\$4	Float	pix	Object position along y		
ALPHA_J2000	\$5	Double	deg	Right ascension of barycenter (J2000)		
DELTA_J2000	\$6	Double	deg	Declination of barycenter (J2000)		
FWHM_IMAGE	\$7	Float	pix	FWHM assuming a gaussian core		
ELLIPTICITY	\$8	Float		1 - B_IMAGE/A_IMAGE		
R	\$9	Double		Expression: 21.52-2.5*log10(\$2/1)		

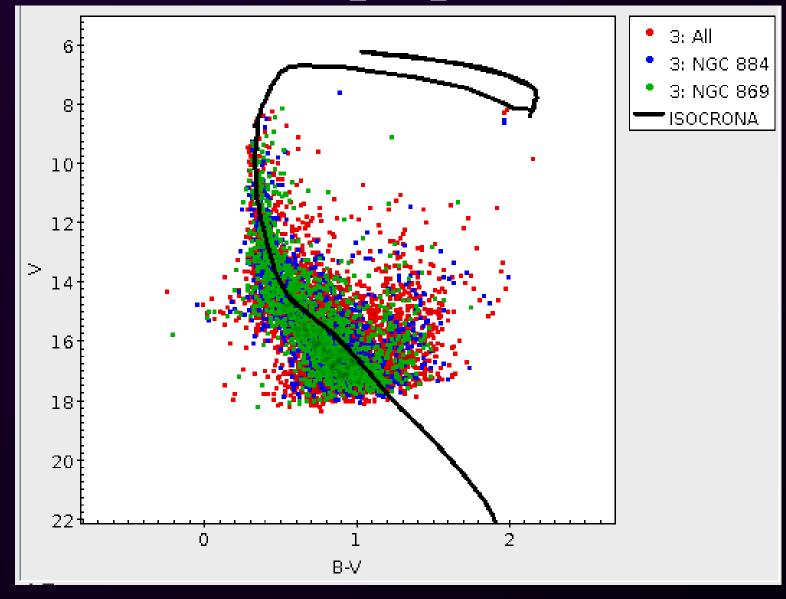
Con questi valori si può calcolare la magnitudine di ogni stella presente nel catalogo.

CREAZIONE DEL DIAGRAMMA COLORE-MAGNITUDINE

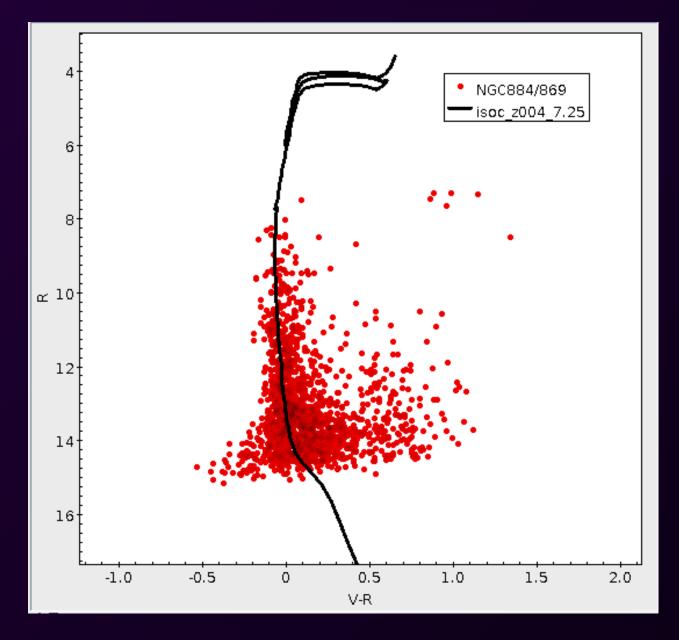

Unione delle immagini ottenute con filtri diversi

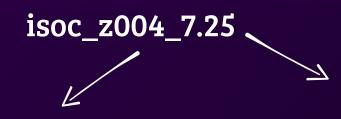
Concatenazione delle foto sottoposte allo stesso filtro


Calcolo dell'indice di colore delle stelle dell'ammasso


CONFRONTO CON LE ISOCRONE FORNITE

Abbiamo confrontato i grafici ottenuti con varie isocrone (modelli teorici) per stimare età, metallicità e distanza dell'ammasso studiato.

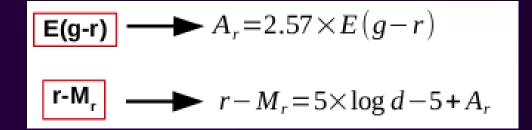

isoc_z019_7.30


CONFRONTO CON LE ISOCRONE FORNITE

Abbiamo confrontato i grafici ottenuti con varie isocrone (modelli teorici) per stimare età, metallicità e distanza dell'ammasso studiato.

isoc_z004_7.25

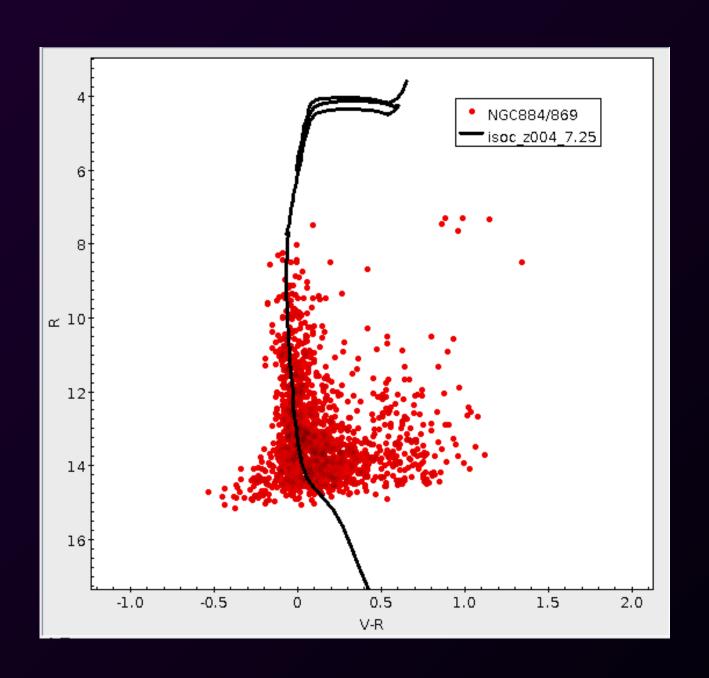
CALCOLO DI METALLICITÀ, ETÀ E DISTANZA



log10 (età) = 7.25 \longrightarrow Età = $10^{7.25}$

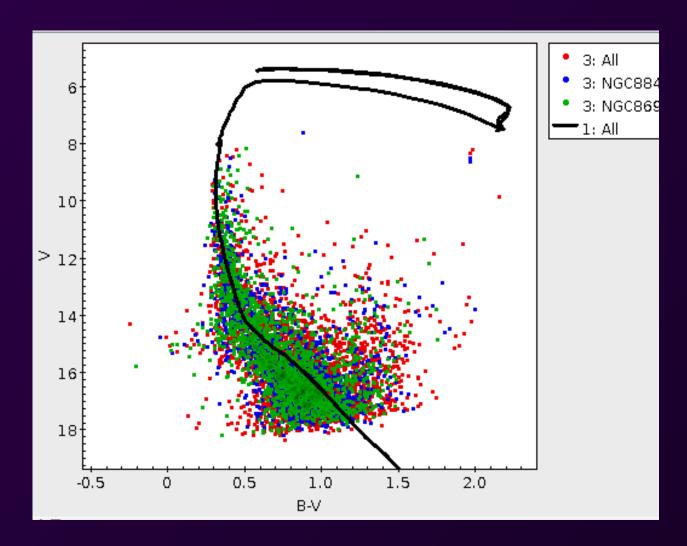
Metallicità = 0.004

Distanza:


$$d=10^{\frac{r-M_r+5-A_r}{5}}$$

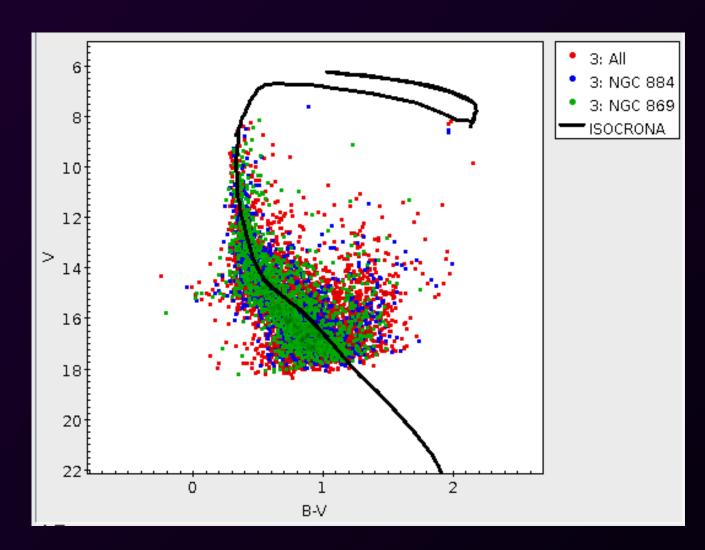
Traslazione dell'isocrona sull'asse x

Traslazione dell'isocrona sull'asse y


Con questa isocrona e le traslazioni di 0.05 sull'asse x e di 11.5 sull'asse y d = 1900 pc (circa)

I dati in questione sono vicini a quelli trovati online, in particolare su SIMBAD

CALCOLO DI METALLICITÀ, ETÀ E DISTANZA


isoc_z019_7.10

^{7.10}/₁₀ < età < 10

Metallicità = 0.019

Con queste isocrone e le traslazioni di 0.55 sull'asse x e di 13 sull'asse y d = 2000 pc (circa) isoc_z019_7.30

Quello in questione è un ammasso aperto , è giovane e si è formato in un universo in cui erano presenti metalli pesanti generati dall'esplosione di alcune stelle, perciò presenta una mettallicità alta. Il cielo come laboratorio - 2025

GRAZIE PERILATIENZIONE

Bisogno Antonio Mattia, Busetto Matteo, Heinz Mattia, Marson Eva Jane, Sartori Arianna, Trivellato Rachele, Vicario Nicolo'