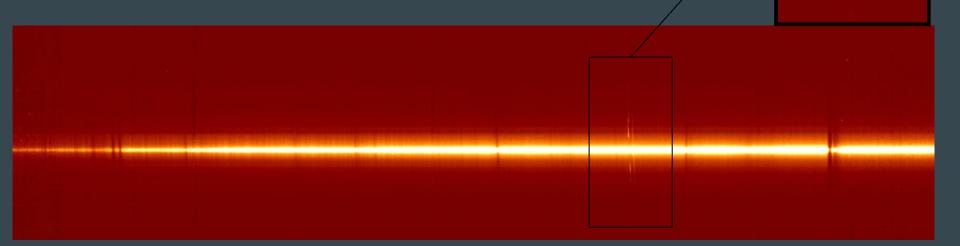
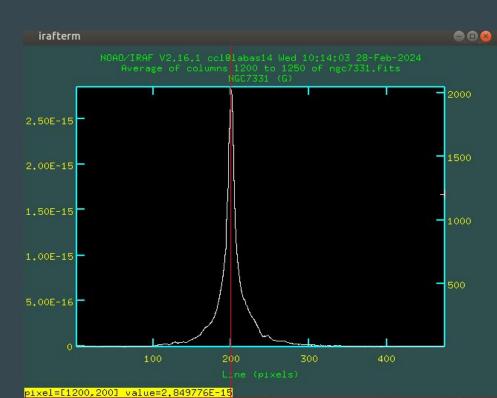

Analisi della curva di rotazione della galassia ngc 7331

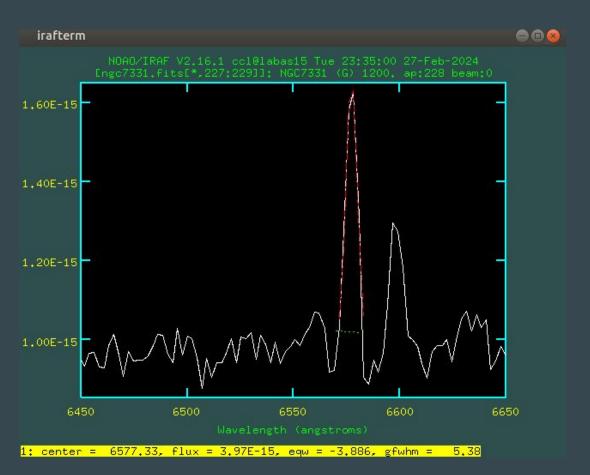
Kling Daniele Veronese Riccardo Liceo G. Veronese Fiorello Andrea


IIS Calabrese-Levi Liceo G. Marconi

Procedimento


Analisi dello spettro

Osservando lo spettro della nostra galassia notiamo delle bande di assorbimento ma soprattutto notiamo due picchi di emissione uno dei quali ha una lunghezza d'onda λ =6601.44 Å al centro della galassia. Questo corrisponderebbe all'azoto ionizzato che a riposo a una lunghezza d'onda NII: λ =6584 Å senza redshift.



Elaborazione dello spettro in iraf

Considerato l'intervallo di spettro continuo 1200-1250 riusciamo dunque tramite IRAF a determinare il picco di radiazione del continuo a 200px, punto a cui corrisponde il centro della galassia, da cui partiremo per il fitting gaussiano.

Fitting gaussiano della riga

Dunque partendo dal centro della galassia e spostandosi lungo le ordinate del grafico col programma IRAF, con il comando nsum 3 il quale somma l'intensità dei 3 pixel adiacenti, man mano creiamo il fitting di ogni picco di emissione lungo la riga registrando in una tabella il valore del Pixel e la lunghezza d'onda corrispondente

Intervallo riga: 6450-6650

TOPCAT

Table Browser for 4: tabella_NII.csv								
	coll	col2	pixel_centro	redshift	velocità	vel_rel	vel_rot_reale	dist_centro (kpc)
1	123	6603.85	-77	0.00301	904.46537	109.81166	114.62595	-4.1195
2	126	6604.932	-74	0.00318	953.76671	159.113	166.08873	-3.959
3	127	6605.589	-73	0.00328	983.70292	189.04921	197.33738	-3.9055
4	128	6606.659	-72	0.00344	1032.45747	237.80377	248.2294	-3.852
5	129	6607.128	-71	0.00351	1053.82746	259.17375	270.53628	-3.7985
6	130	6607.585	-70	0.00358	1074.65067	279.99696	292.2724	-3.745
7	131	6607.278	-69	0.00354	1060.66221	266.00851	277.67067	-3.6915
8	132	6606.812	-68	0.00346	1039.42892	244.77521	255.50649	-3.638
9	133	6606.377	- 67	0.0034	1019.60814	224.95443	234.81674	-3.5845
10	134	6608.311	-66	0.00369	1107.73086	313.07716	326.80288	-3.531
11	135	6607.68	- 65	0.0036	1078.97934	284.32564	296.79085	-3.4775
12	136	6607.219	-64	0.00353	1057.97388	263.32017	274.86448	-3.424
13	137	6607.589	-63	0.00358	1074.83293	280.17922	292.46265	-3.3705
14	138	6606.8	-62	0.00346	1038.88214	244.22843	254.93573	-3.317
15	139	6607.22	-61	0.00353	1058.01944	263.36574	274.91204	-3.2635
16	140	6605.456	-60	0.00326	977.64277	182.98906	191.01155	-3.21
17	141	6605.544	-59	0.00327	981.65249	186.99878	195.19706	-3.1565
18	142	6605.563	-58	0.00328	982.51823	187.86452	196.10075	-3.103
19	143	6606.317	-57	0.00339	1016.87424	222.22053	231.96298	-3.0495
20	144	6606.284	-56	0.00338	1015.3706	220.71689	230.39341	-2.996
21	145	6605.196	-55	0.00322	965.79587	171.14216	178.64526	-2.9425

53	278	6595.955	78	0.00182	544.72965	-249.92406	-260.88106	k
54	279	6595.992	79	0.00182	546.41555	-248.23815	-259.12125	
55	280	6595.663	80	0.00177	531,42467	-263.22904	-274.76935	3
56	281	6595.819	81	0.0018	538.53281	-256.1209	-267.34958	
57	282	6596.031	82	0.00183	548.19259	-246.46112	-257.2663	3
.58	283	6596.703	83	0.00193	578.81227	-215.84143	-225.30421	3
59	284	6597.003	84	0.00197	592.48177	-202.17193	-211.03542	1
60	285	6597.02	85	0.00198	593.25638	-201.39733	-210.22685	3
61	286	6596.763	86	0.00194	581.54617	-213.10753	-222.45045	3
62	287	6596.366	87	0.00188	563, 45687	-231.19684	-241.33282	3
63	288	6595.973	88	0.00182	545.54982	-249.10389	-260.02494	
64	289	6596.024	89	0.00183	547.87363	-246.78007	-257.59924	1
65	290	6596.792	90	0.00194	582.86756	-211.78615	-221.07114	1
66	291	6597.703	91	0.00208	624.37728	-170.27643	-177.74157	1
67	292	6597.794	92	0.0021	628.52369	-166.13001	-173.41337	
68	302	6596.194	102	0.00185	555.61968	-239.03402	-249.51359	1
69	305	6598.122	105	0.00214	643.46902	-151.18469	-157.81283	
70	307	6595.583	107	0.00176	527.77947	-266.87424	-278.57436	
71	308	6595.052	108	0.00168	503.58445	-291.06926	-303.83012	
72	309	6594.423	109	0.00158	474.92406	-319.72965	-333.74702	3
73	331	6597.097	131	0.00199	596.76488	-197.88882	-206.56453	
74	333	6596.395	133	0.00188	564.77825	-229.87546	-239.9535	3
75	334	6595.491	134	0.00175	523.58748	-271.06622	-282.95013	3
76	335	6594.945	135	0.00166	498.70899	-295.94471	-308.91933	3
77	336	6595.299	136	0.00172	514.839	-279.8147	-292.08215	3

/3	197	0001.633	- 3	0.002/1	012,300/3	17.90703	10.09212	-0.1003
74	198	6601.695	-2	0.00269	806.27278	11.61908	12.12847	-0.107
75	199	6601.527	-1	0.00266	798.61786	3.96416	4.13795	-0.0535
76	200	6601.44	0	0.00265	794.65371	0.	0.	0,
77	202	6600.109	2	0.00245	734.00668	-60.64702	-63.30587	0.107
78	203	6599.941	3	0.00242	726.35176	-68.30194	-71.29639	0.1605
			7.					

Calcolo del redshift

Una volta ricavate dallo spettro le lunghezze d'onda delle righe di emissione di [NII] e $H\alpha$ è possibile calcolare il redshift delle righe secondo la formula

$$z = \frac{\lambda - \lambda_0}{\lambda_0}$$

Con
$$\lambda_0(NII) = 6584 \,\text{Å} \, \text{e} \, \lambda_0(H\alpha) = 6563 \,\text{Å}$$

Otteniamo quindi il redshift delle righe misurate in ogni posizione

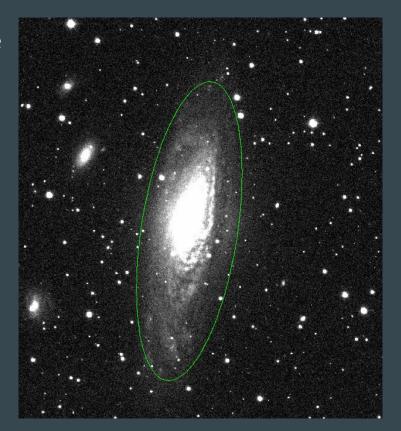
Calcolo delle velocità (redshift e velocità relativa al centro)

Attraverso il redshift è possibile ricavare la velocità di ogni punto della galassia rispetto all'osservatore:

$$v = \frac{\lambda - \lambda_0}{\lambda_0} \cdot c$$

Per ottenere la velocità di rotazione rispetto al centro della galassia, calcoliamo la velocità in questo punto (px0) con lo stesso procedimento, e la sottraiamo a ciascuna delle altre velocità ricavate, secondo la formula:

$$v_{rel} = v_{misurata} - v_{centro}$$
 $v_{centro} \simeq 794,7 \, km/s$


Correzione inclinazione galassia

Poiché la galassia è inclinata dobbiamo correggere i valori delle velocità ottenuti in relazione all'angolo di inclinazione.

Essendo ngc7331 una galassia a spirale e quindi dalla forma a disco, è sufficiente applicare la

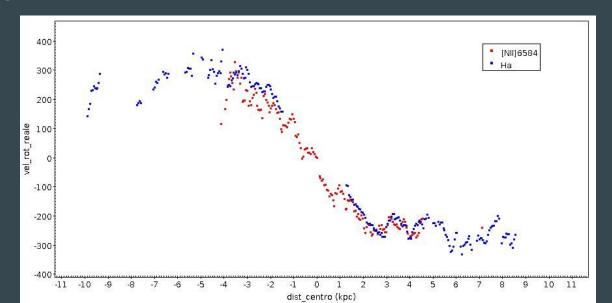
$$v_{rot} = \frac{v}{\sin[\arccos(\frac{b}{a})]}$$

I semiassi si ottengono graficamente grazie a ds9; una volta iscritta la galassia in un'ellisse il programma ne calcola le dimensioni.

Conversione della distanza in kpc

La risoluzione del telescopio Galileo è tale che ad ogni pixel corrisponde un secondo d'arco. Convertiamo quindi i pixel in kpc:

$$kpc/" = 0.053$$

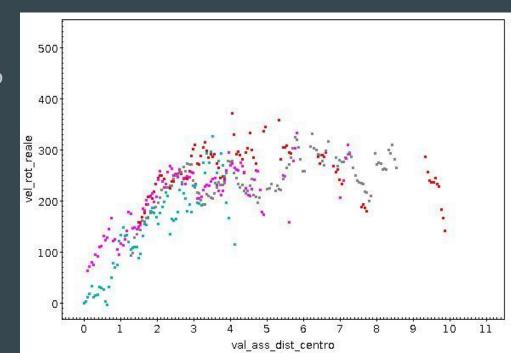

$$d = \frac{v_r}{H_0}$$

Distanza di ngc 7331: d = 11.03 Mpc (d=11.4 Mpc, Simbad)

Correzione dati con fwhm anomala e grafico

Per ottenere dei risultati più precisi eliminiamo i punti del grafico con una fwhm troppo diversa dalla media, che ricaviamo attraverso una distribuzione gaussiana.

Dopo aver trasformato i pixel in kpc abbiamo tracciato il grafico della velocità in funzione della distanza dal centro della galassia.



Calcolo della velocità media di rotazione

Per calcolare la velocità media di rotazione della galassia è necessario calcolare la media delle velocità di rotazione delle regioni più esterne.

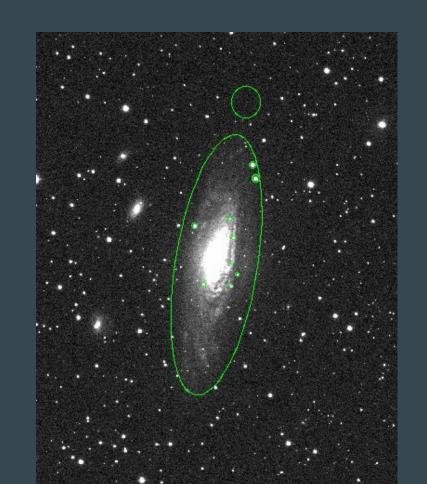
A causa dell' eccessiva dispersione dei punti del grafico dobbiamo calcolare la distribuzione cumulata, e ne ricaviamo che la velocità media è di 262 km/s secondo la formula

$$\Delta v = rac{v_{max} - v_{min}}{2}$$

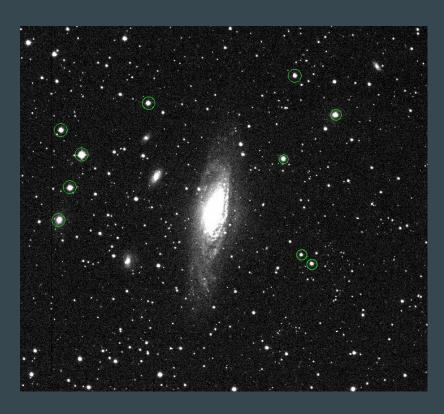
Calcolo della massa

Dopo aver ottenuto la velocità media di rotazione calcoliamo la massa in kg applicando il teorema del viriale

$$M = \frac{\Delta v^2 \cdot R}{G}$$


Massa di ngc 7331: $M_g = 2,932x 10^{41}$ Massa di ngc 7331 in masse solari: $M_g = 1,466x 10^{11} M_{\odot}$

Determinazione della magnitudine


 Abbiamo determinato la luminosità della superficie della galassia, delle stelle e del rumore ottenute tramite ds9

$$L_{g(eff)} = L_{g(imm)} - (n_{px(g)} \cdot rumore) - (L_s - n_{px(s)} \cdot rumore)$$

$$m_{strum} = -2.5 \cdot log(L_{g(eff)})$$

Determinazione della costante della magnitudine

- $m_{app} = m_{strum} + const$
- Abbiamo ottenuto la magnitudine strumentale di varie stelle note stabili, delle quali abbiamo cercato la magnitudine apparente su simbad in modo da ottenere la costante
- $M = m 2,5 \log(\frac{d}{10 pc})$

Calcolo della luminosità e rapporto massa luminosità

Magnitudine assoluta=-21

$$\frac{L_g}{L_{\odot}} = 10^{-0.4(M_g - M_{\odot})}$$

Rapporto massa

luminosità ngc-7331

$$\frac{M_g}{L_g} = 7 \frac{M_{\odot}}{L_{\odot}}$$

Rapporto medio massa

luminosità nelle stelle

$$\frac{M_g}{L_g} = 3 \frac{M_{\odot}}{L_{\odot}}$$

FINE

Un ringraziamento speciale al Dottor Ciroi e all'Università di Padova per l'opportunità