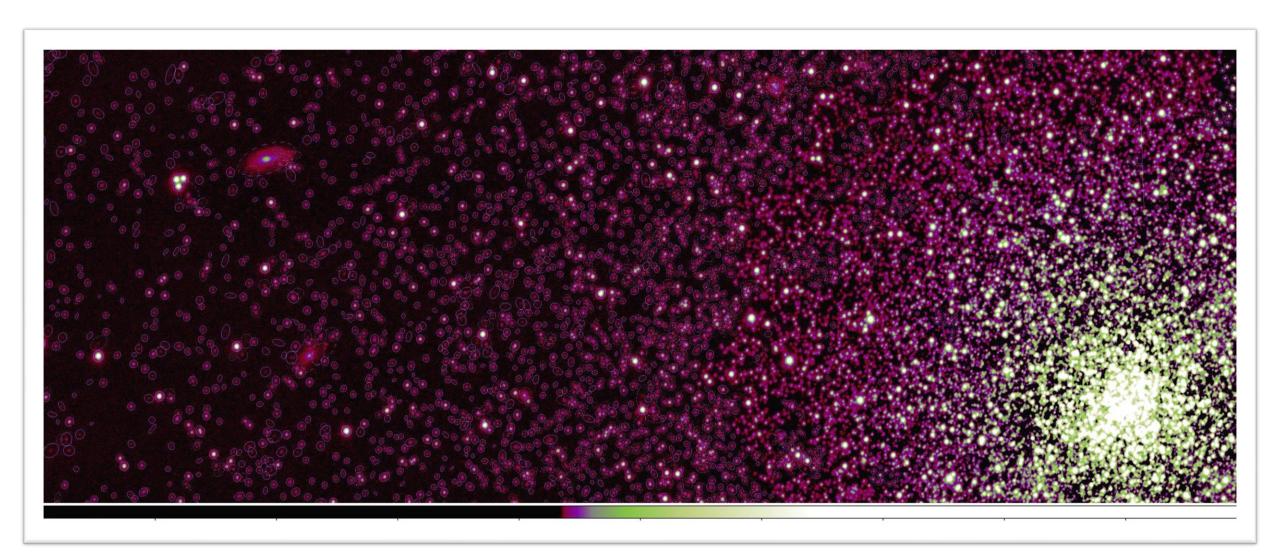
Studio dell'ammasso globulare M3

SVILUPPO DIAGRAMMA HR E DETERMINAZIONE MAGNITUDINE, ETÀ, METALLICITÀ, DISTANZA E ABBONDANZA DI ELIO

Basso Emma, Bortoluzzi Andrea, Dal Pos Martina Gemma, Zara Leonardo – Liceo scientifico «Leonardo da Vinci» Progetto «Il cielo come laboratorio» – Osservatorio astronomico di Asiago – 21/24 febbraio 2024


Fotometria con SExtractor

Utilizzando il software Sextractor, si ricavano sperimentalmente i migliori parametri:

- **DETECT_MINAREA** (min. numero di pixel riconoscibili come sorgente luminosa) = 5
- **DETECT_THRESH** (min. intensità della sorgente rispetto a quella del cielo) = 1.5
- **DEBLEND_MINCONT** (min. contrasto per separare sorgenti vicine) = 0.0001

Si attivano inoltre tutti i parametri di cui si vogliono ottenere i dati:

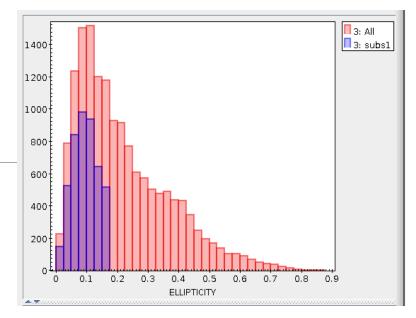
• NUMBER, FLUX_BEST, X_IMAGE, Y_IMAGE, ELLIPTICITY, FWHM_IMAGE, ALPHA_J2000, DELTAJ2000

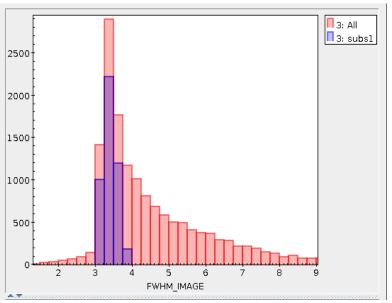
Table Browser for 1: tableg1.1.cat										
	NUMBER	FLUX_BEST	X_IMAGE	Y_IMAGE	ALPHA_J2000	DELTA J20	FWHM_IMA			
1	1	8226.42	697.401	207.254	205.24819	28.29924	3.52			
2	2	15469.	747.471	161.466	205.24364	28.30554	60.67			
3	3	6.82600E5	1973.74	105.97	205.26338	28.43938	3.2			
4	4	6803.24	725.162	117.425	205.23774	28.30396	48.91			
5	5	4.18410E5	714.724	152.816	205.24187	28.30216	8.32			
6	6	20392.	1302.51	44.9892	205.24132	28.36786	3.32			
7	7	647.122	1113.57	23.4811	205.23458	28.34781	8.3			
8	8	3699.55	1436.59	25.3137	205.2418	28.38275	3.44			
9	9	2636.11	1298.75	22.6413	205.23849	28.36787	3.64			
10	10	1418.64	554.128	23.7921	205.22252	28.28722	3.65			
11	11	860.82	1776.65	24.5366	205.24908	28.41959	7.15			
12	12	655.221	1685.96	21.4768	205.24673	28.40982	4.06			
13	13	541.22	985.514	21.0982	205.23152	28.33399	3.67			
14	14	5142.06	1363.28	16.4912	205.23913	28.37498	3.36			
15	15	1000.11	1786.02	11.0231	205.24762	28.42086	7.71			
16	16	2500.54	1282.84	13.5438	205.23703	28.36632	3.35			
17	17	744.069	1646.65	13.5451	205.24491	28.40572	3.35			
18	18	112.8	309.334	14.5062	205.21609	28.26089	4.68			
	4									

Total: 15,391 Visible: 15,391 Selected: 0

Fotometria con SExtractor

Si ottengono un'immagine e una tabella dati per ogni scatto iniziale in tre filtri differenti (G, R, I)

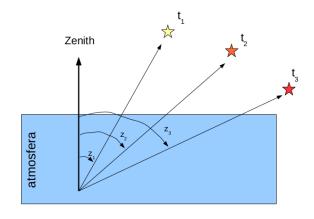

Una delle limitazioni maggiori consiste nella difficoltà del software nel riconoscere le sorgenti luminosi in zone estremamente dense e luminose, come il centro dell'ammasso: dunque non si sono ricavati i dati delle stelle centrali.


Sono state ricavate circa 30.000 stelle per ogni filtro

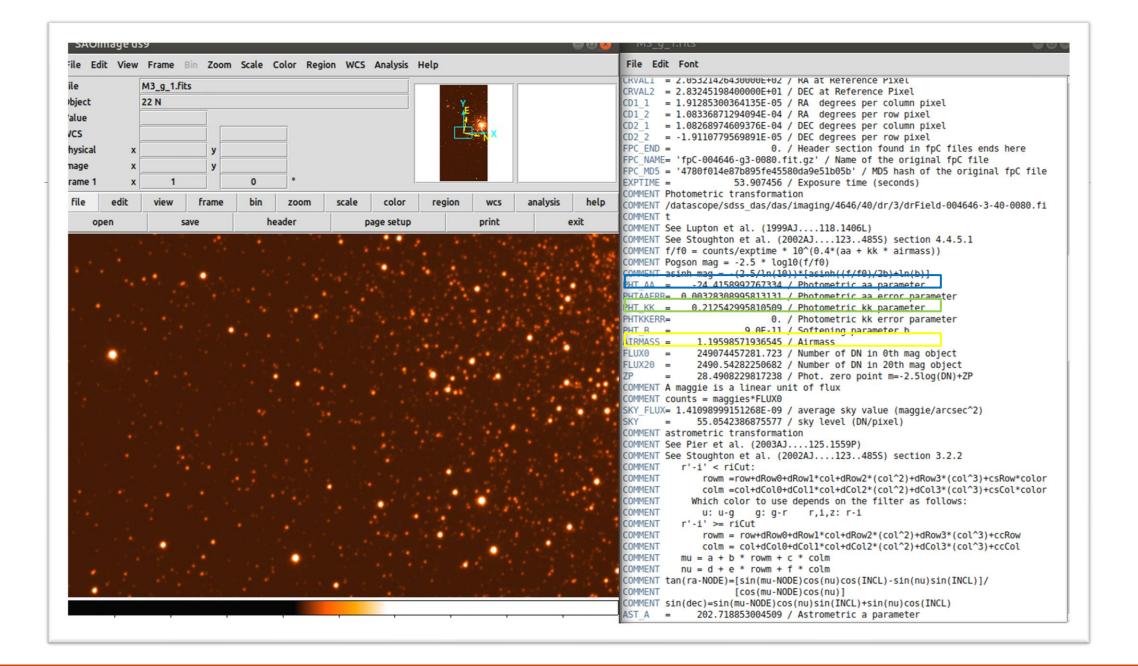
Ellitticità e FWHM

Per considerare esclusivamente le stelle dell'ammasso ed escludere galassie retrostanti, stelle dinanzi e alcuni rumori scambiati per sorgenti, si effettua un subset delle tabelle con il software *TOPCAT* che considera solo sorgenti di luce con ellitticità e < 0.2 ed un FWHM ≈ seeing medio delle sorgenti.

Sono state selezionate circa 7.000 sorgenti per ogni filtro.



Calcolo magnitudine apparente


Utilizzando i dati forniti dal software *ds9* riguardo i vari scatti presi, è possibile calcolare la magnitudine per ciascun filtro di ogni singola stella selezionata precedentemente, secondo:

$$m = m_0 - 2.5 * \log(\frac{FLUX}{T_{exp}}) - k * AIRMASS$$

 m_0 = costante di calibrazione per passare da ADU a unità fisiche k*AIRMASS = correzione per estinzione atmosferica

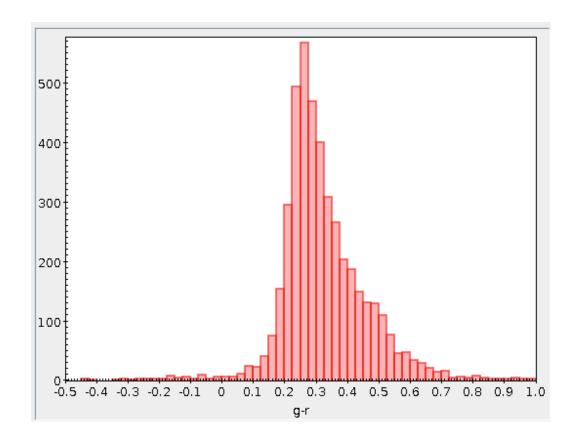
Massa d'aria $X = 1/\cos(z)$

Unione dei due scatti

Essendo l'ammasso separato in due scatti parzialmente sovrapponibili, è necessario scartare i dati ripetuti delle stelle in comune, per poi formare un unico database per ogni filtro.

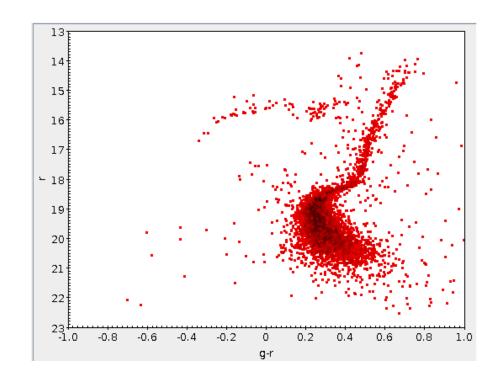
Si utilizza lo strumento *match tables* di *TOPCAT* e le coordinate astronomiche AR/Dec ALPHA_J2000 e DELTA_J2000 per riconoscere le ripetizioni.

Circa un centinaio di stelle sono state scartate.


	NUMBER	FLUX_BEST	X_IMAGE	Y_IMAGE	ALPHA_J2000	DELTA_J20	FWHM_IMA	E
1	1	8226.42	697.401	207.254	205.24819	28.29924	3.52	П
2	2	15469.	747.471	161.466	205.24364	28.30554	60.67	
3	3	6.82600E5	1973.74	105.97	205.26338	28.43938	3.2	
4	4	6803.24	725.162	117.425	205.23774	28.30396	48.91	
5	5	4.18410E5	714.724	152.816	205.24187	28.30216	8.32	П
6	6	20392.	1302.51	44.9892	205.24132	28.36786	3.32	
7	7	647.122	1113.57	23.4811	205.23458	28.34781	8.3	
8	8	3699.55	1436.59	25.3137	205.2418	28.38275	3.44	
9	9	2636.11	1298.75	22.6413	205.23849	28.36787	3.64	
10	10	1418.64	554.128	23.7921	205.22252	28.28722	3.65	
11	11	860.82	1776.65	24.5366	205.24908	28.41959	7.15	
12	12	655.221	1685.96	21.4768	205.24673	28.40982	4.06	
13	13	541.22	985.514	21.0982	205.23152	28.33399	3.67	
14	14	5142.06	1363.28	16.4912	205.23913	28.37498	3.36	
15	15	1000.11	1786.02	11.0231	205.24762	28.42086	7.71	
16	16	2500.54	1282.84	13.5438	205.23703	28.36632	3.35	
17	17	744.069	1646.65	13.5451	205.24491	28.40572	3.35	
18	18	112.8	309.334	14.5062	205.21609	28.26089	4.68	
	4							١

Calcolo indici di colore G-R e R-I

Utilizzando *TOPCAT* si crea un unico database contenente tutti i dati dei due filtri.


Per riconoscere le stesse stelle nei due filtri e sottrarre le due magnitudini, è necessario identificarle attraverso le loro coordinate astronomiche AR/Dec ALPHA_J2000 e DELTA_J2000.

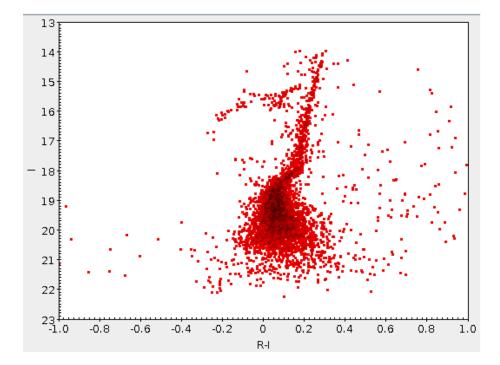
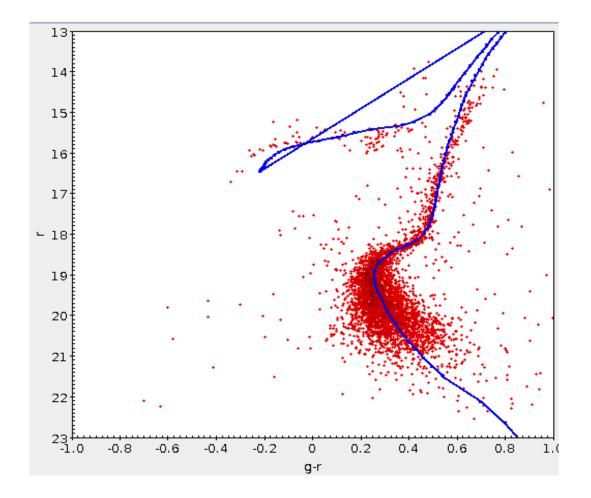
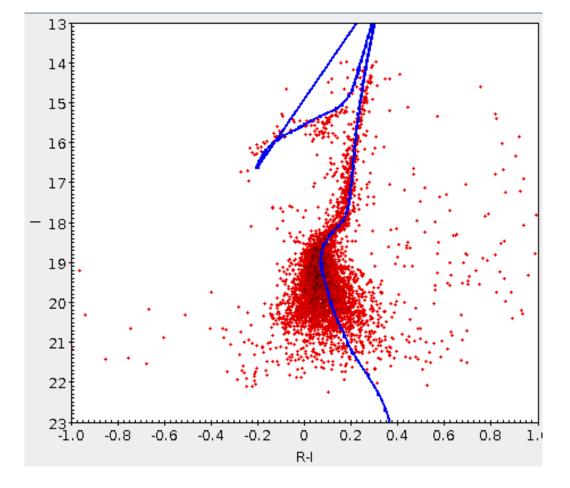

A causa di imprecisioni del software, circa il 50% delle stelle non sono state accoppiate: il database rimasto ne include circa 4.000.

Diagramma H-R

È possibile realizzare un diagramma H-R avendo ricavato l'indice di colore e la magnitudine apparente di ogni stella.





Si confronta il diagramma HR ottenuto con le isocrone (modelli teorici evolutivi) cercando la miglior corrispondenza. I due parametri principali che influenzano il diagramma sono l'età dell'ammasso e la sua metallicità.

<u>L'età dell'ammasso è determinata dalla posizione del suo turn-off point, la quale in questo caso si identifica con $10^{10,2}$ anni ($\approx 15,8$ Gyr).</u>

Essendo l'ammasso molto vecchio, le stelle si sono formate da gas mai sottoposti a fusioni nucleari precedenti, quindi poveri di metalli e ricchi di idrogeno ed elio. Per questo la metallicità è bassa (0001).

Sovrapponendo il modello al diagramma HR e considerando le componenti vettori traslazione, è possibile calcolare la distanza dell'ammasso con la seguente formula:

Dal vettore in x --> E(r-i): $A_i = 2.57 \times E(r-i)$

Dal vettore in y --> i- M_i : i- M_i = 5*log(d)-5+ A_i ...

$$d = 10^{\frac{i - M_i + 5 - A_i}{5}}$$

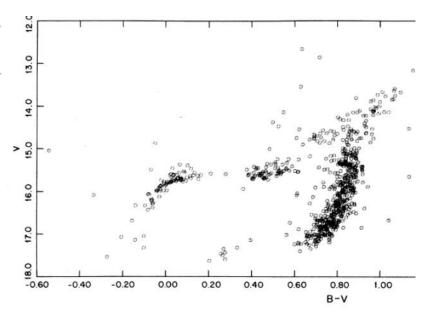
I nostri valori di $E(r-i) = 0.029 \text{ ed } (i-M_i) = 15.05$

<u>La distanza ottenuta risulta d = 9.887 pc = 9,89kpc</u>

Per calcolare l'abbondanza di elio Y si utilizza il metodo R':

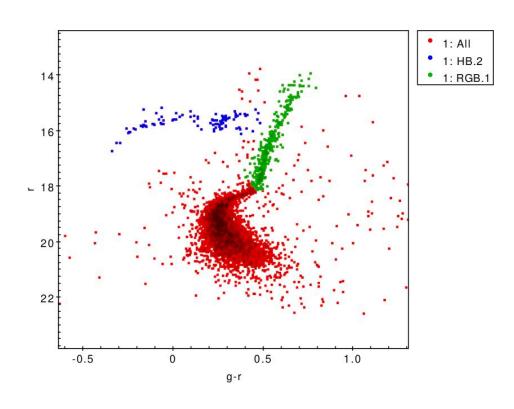
$$R' = N_{HB}/N_{RGB+AGB} = t_{HB}/(t_{RGB}+t_{AGB})$$

 $Y = 0.457 \log R' + 0.204$


<u>Si ricava Y=-0,008, valore impossibile.</u>

L'errore deriva probabilmente dall'imprecisione della formula, dal fatto che il software non è riuscito ad analizzare le stelle centrali dell'ammasso, dall'imprecisione nell'identificare ad occhio l'inizio dell'RGB.

Perché la formula sia valida si devono considerare soltanto diagrammi HR che contengano un HB popoloso come RGB, quindi probabilmente appartenenti ad ammassi più vecchi.


Table 1. Data for galactic globular clusters

Cluster	c 1	N HB+RR	N RR	N RGB	N AGB	R	R'	Y(R)	Y(R)	Y(R')	Y(R')	R1	References
104 47	7Tuc+	365	0	208	45	1.75+0.21	1.44+0.17	0.27+0.02	0.27	0.27+0.02	0.27	0.22+0.05	Lee 1977a
362		78	4	65	13	1.20 0.28	1.00 0.23	0.21 0.04	0.21	0.21 0.04	0.20	0.20 0.08	Harris 1982
1851		101	7	70	15	1.44 0.32	1.19 0.25	0.24 0.03	0.24	0.24 0.04	0.24	0.21 0.08	Stetson 1981
3201		175	60	121	19	1.45 0.24	1.25 0.20	0.24 0.03	0.24	0.25 0.03	0.25	0.16 0.05	Lee 1977c
4147		59	14	38	7	1.55 0.45	1.31 0.37	0.25 0.05	0.25	0.26 0.05	0.26	0.18 0.10	Sandage and Walker 1955
5272 M3	3	183	83	142	28	1.29 0.20	1.08 0.16	0.22 0.02	0.22	0.22 0.03	0.22	0.20 0.05	Sandage and Katem 1982
5904 M5	5	164	40	140	31	1.16 0.19	0.96 0.15	0.20 0.03	0.20	0.20 0.03	0.20	0.22 0.06	Buonanno et al.1981
6121 M4	4	148	38	113	20	1.31 0.23	1.11 0.19	0.22 0.03	0.22	0.23 0.03	0.23	0.18 0.06	Lee 1977b
6171 M1	107	45	8	29	6	1.55 0.52	1.29 0.41	0.25 0.05	0.25	0.25 0.06	0.25	0.21 0.12	Dickens and Rolland 1972
6218 M1	12	80	0	59	11	1.36 0.33	1.14 0.26	0.23 0.04	0.23	0.23 0.04	0.23	0.19 0.08	Racine 1971
6254 M1	1.0	70	0	48	11	1.46 0.39	1.19 0.30	0.24 0.04	0.24	0.24 0.05	0.24	0.23 0.10	Harris et al.1976
6341 M9	92	117	7	85	21	1.38 0.28	1.10 0.21	0.23 0.03	0.23	0.22 0.02	0.22	0.25 0.08	Buonanno et al.1983b
6752		97	2	64	13	1.52 0.34	1.26 0.27	0.25 0.03	0.25	0.25 0.04	0.25	0.20 0.08	Cannon and Lee 1981
6809 M5	55	209	7	158	45	1.32 0.20	1.03 0.14	0.22 0.02	0.22	0.21 0.02	0.21	0.28 0.06	Lee 1977d
7078 M1	15	152	33	107	22	1.42 0.25	1.18 0.20	0.23 0.03	0.23	0.24 0.03	0.24	0.21 0.07	Buonanno et al.1983a

Sandage, A. & Katem, B.

<u>ADS</u>

Per trovare Y>0 dovrebbero esserci la stessa quantità di stelle nel ramo HB e RGB + AGB. Invece sappiamo che una stella trascorre dieci volte più tempo nel RGB, quindi utilizzare la formula con successo pare molto improbabile.

Conclusioni

Considerando che i dati utilizzati si riferiscono a meno dell'1% delle stelle dell'ammasso (≈4.000/500.000 stelle) e le imprecisioni nei diversi passaggi, i risultati ottenuti possono ritenersi comunque soddisfacenti:

- O Distanza dottenuta = 9,89kpc
- O Età_{ottenuta} = 10^{10,2} anni (≈ 15,8 Gyr)
- O Y_{elio ottenuta} = **-0,008**
- Metallicità_{ottenuta} = **0.0001**

- Distanza d_{effettiva} = 10,4kpc
- Età_{effettiva} = 10¹⁰ anni (10Gyr)
- $_{\odot}$ Y_{elio_effettiva} = 0,22±0.03
- O Metallicità effettiva = ?

Fonte: <u>ADS</u> e <u>Messier_catalog</u>