DIAGRAMMA H-R DI M53

di Lorenzo Citterio e Leonardo Montagner 23-25 marzo 2022

M53

M53 è un ammasso globulare situato nella costellazione della Chioma di Berenice (vicino al Leone).

Gli ammassi globulari sono raggruppamenti molto densi ed estremamente antichi di stelle con caratteristiche simili, perché nate nello stesso periodo e zona.

Si trova ai confini della Via Lattea, ed è uno degli ammassi più distanti da noi.

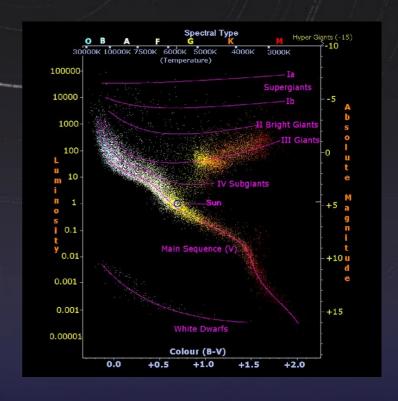
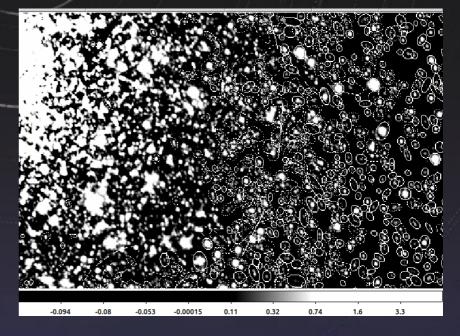


DIAGRAMMA H-R

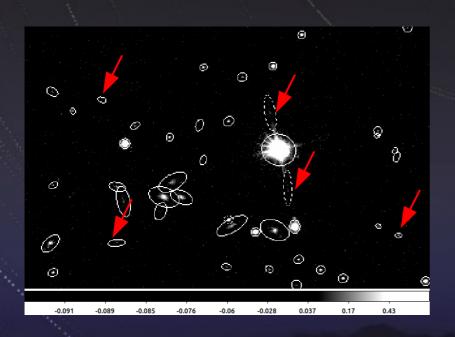
I diagrammi H-R permettono di ricavare moltissime informazioni sulle stelle analizzate.

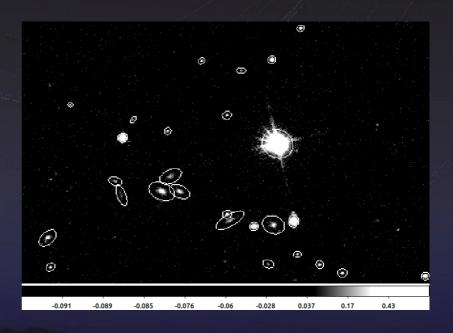
Mettono in relazione la luminosità e la temperatura superficiale di una stella.


Dato che questi dati sono difficili da misurare, si preferisce usare un grafico le cui grandezze siano più facili da ottenere: indice di colore e magnitudine.

INDIVIDUAZIONE SORGENTI

• Si analizzano con il programma Source Extractor le immagini masso ottenute attraverso filtri differenti (G-R-I). Il programma trova tutte le stelle nella foto tramite una serie di parametri modificabili.

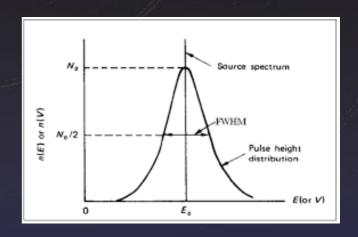

```
14 DETECT_TYPE CCD
15 DETECT_MINAREA 5
16
17 DETECT_THRESH 2.5
18 ANALYSIS_THRESH 1.5
19
20 FILTER Y
21 FILTER_NAME default.conv
22
23 DEBLEND_NTHRESH 32
324 DEBLEND_MINCONT 0.005
```



INDIVIDUAZIONE SORGENTI

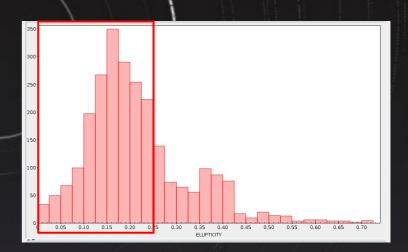
• I parametri indicano l'intensità, l'ampiezza e la separazione minime perchè una sorgente di luce venga considerata.

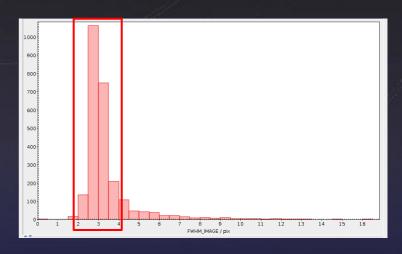
Bisogna sceglierli in modo da escludere sorgenti fittizie.



INDIVIDUAZIONE SORGENTI

• Alla fine, si ottiene oltre all'immagine una tabella che elenca per tutte le sorgenti il flusso, l'ellitticità, le coordinate e la FWHM.

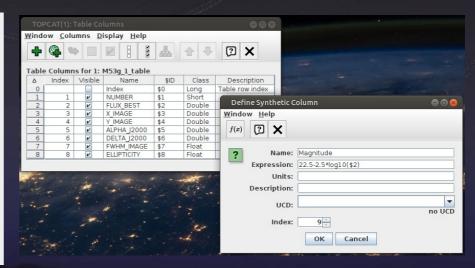

Table Browser for 6: M53q 1d.cat													
	Table		FLUX BEST		Y_IMAGE	ALPHA I2000	DELTA 12000	FWHM IMAGE	ELLIPTICITY				
	1	1	2258.7		45.3059	198.06951	18.32107		0.166	_			
	2	2	464.803	1938.68	31.7435	198.07958	18.46314		0.114				
	3	3	7.68877	89.4302	18.6408	198.06146	18.26054	2.76	0.169				
	4	4	64.409	1283.9	10.8795	198.07129	18.39154	5.7	0.139	11 1			
	5	5	2.39711	1398.78	10.3181	198.07225	18.40414	5.28	0.369	11 1			
	6	6	5.84807	1098.37	8.4304	198.06934	18.37122	3.27	0.194	11 1			
	7	7	2.82403	473.623	9.2478	198.06382	18.30273	3.	0.16	11 1			
	8	8	15.0183	1219.87	4.1255	198.06993	18.38458	3.74	0.085	11 1			
	9	9	2.9988	40.506	3.4737	198.05927	18.25531	4.26	0.239				
	10	10	6.13111	29.4538	24.99	198.06165	18.25391	2.64	0.096				
	11	11	1.81439	1528.11	19.6375	198.07449	18.41824	2.04	0.204				
	12	12	5.44382	1020.94	26.4414	198.07072	18.36258	3.27	0.099				
	13	13	51.0901	1059.63	37.5919	198.07236	18.36673	2.87	0.137				
	14	14	5.85815	1846.44	33.2987	198.07893	18.45301	2.57	0.125				
	15	15	2.50244	171.601	31.3435 52.9384	198.06366	18.26944	3.	0.125				
	16	16	94.571	1115.84		198.07464	18.37276	2.94	0.13				
	17	17	1.62824	301.292	30.2379	198.0647	18.28366	3.08	0.156				
	18	18	2.73647	1116.17	35.136	198.07258	18.37295	5.37	0.036				
	19	19	2.41031	529.727	40.3918	198.06792	18.30862	3.15	0.205				
	20	20	27.0667	122.115	60.2879	198.06656	18.26377	2.62	0.123				
	21	21	158.542	184.643	69.6417	198.0682	18.27054	2.98	0.153	-			
	Total:	2,504 \	/isible: 2,504	Selected: 0									



FILT/RAGGIO

Bisogna poi raffinare la selezione togliendo le sorgenti che non sono stelle: si filtra la tabella prendendo solo quelle che hanno ellitticità e FWHM entro certi valori compatibili con oggetti puntiformi (noi abbiamo scelto ellitticità < 0,25 e FWHM compreso tra 2,0 e 4,0).

100				34						4000	
Table	е Ві	rowse	er f	or 8: M53g	1_table						
	1	NUMP	R	FLUX_BEST	X_IMAGE	Y_IMAGE	ALPHA_J2000	DELTAJ2000	FWHM_IMAGE	ELLIPTICITY	
]	L	- [:	2	464.8031	1938.6785	31.7435	198.07958	18.46314	2.74	0.114	_
2	2	- [;	3	7.68877	89.4302	18.6408	198.06146	18.26054	2.76	0.169	
3	3	(6	5.84807	1098.3713	8.4304	198.06934	18.37122	3.27	0.194	
	4		7	2.82403	473.6228	9.2478	198.06382	18.30273	3.	0.16	
	5		8	15.01826	1219.873	4.1255	198.06993	18.38458	3.74	0.085	
6	6	10	0	6.13111	29.4538	24.99	198.06165	18.25391	2.64	0.096	
7	7	11	1	1.81439	1528.106	19.6375	198.07449	18.41824	2.04	0.204	
8	3	12	2	5.44382	1020.9383	26.4414	198.07072	18.36258	3.27	0.099	
9	9	13	3	51.09015	1059.6321	37.5919	198.07236	18.36673	2.87	0.137	
10)	14	4	5.85815	1846.4447	33.2987	198.07893	18.45301	2.57	0.125	
11	L	15	5	2.50244	171.6007	31.3435	198.06366	18.26944	3.	0.125	
12	2	10	6	94.57095	1115.841	52.9384	198.07464	18.37276	2.94	0.13	
13	3	17	7	1.62824	301.2915	30.2379	198.0647	18.28366	3.08	0.156	
14	1	19	9	2.41031	529.7271	40.3918	198.06792	18.30862	3.15	0.205	
15	5	20	0	27.06665	122.1154	60.2879	198.06656	18.26377	2.62	0.123	
16	6	2	1	158.5421	184.6431	69.6417	198.0682	18.27054	2.98	0.153	11 1
17	7	2	2	1.75705	1784.0958	48.3711	198.08012	18.44605	2.29	0.236	1
18	3	20	6	2.67757	797.4467	64.4091	198.0731	18.33776	3.36	0.244	
19	9	2	7	1.18281	37.1547	66.1504	198.06648	18.25441	2.78	0.247	
20	0	32	2	16.62734	724.9197	97.9314	198.07632	18.32953	2.94	0.151	
21	L	33	3	1.48964	272.6864	87.9553	198.07111	18.28004	3.21	0.109	
Tota	l: 1,	711	v	isible: 1,71	1 Selected	d: 0					


MAGNITUDINE

 Adesso, con i dati si può calcolare la magnitudine apparente (non occorre quella assoluta, poiché si tratta di un ammasso e le stelle hanno circa la stessa distanza).
 Visto che i nostri flussi sono in nanomaggy, la formula per convertirli in magnitudine è:

 $m = [22.5 \text{ mag}] - 2.5 \log_{10} f$

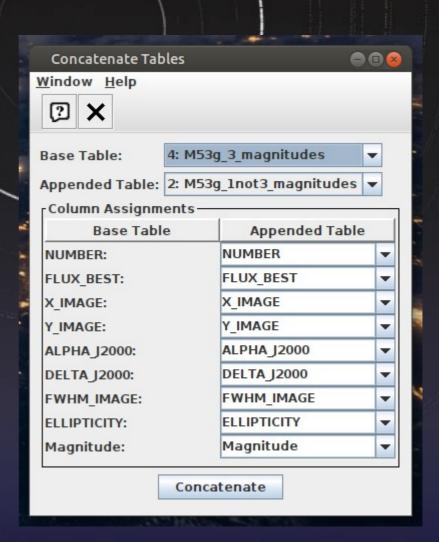
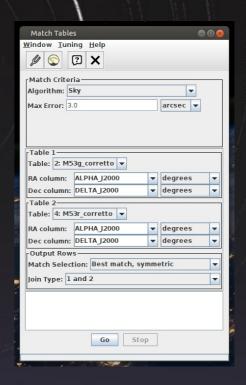

• Si inseriscono le magnitudini nella tabella:

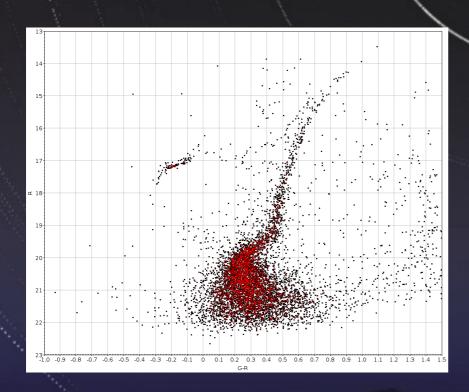
Table I	Browser	for 2: M53	g_corretto							
	NUMBER	FLUX_BEST	X_IMAGE	Y_IMAGE	ALPHAJ2000	DELTA_J2000	FWHM_IMAGE	ELLIPTICITY	Magnitude	
1	1	24.61553	182.2453	24.1554	198.00807	18.14085	3.05	0.126	19.02198	_
2	3	1.30726	260.901	11.7063	198.00725	18.14957	3.45	0.239	22.2091	
3	7	0.71855	1748.8445	13.8646	198.01918	18.31278	2.95	0.212	22.85885	
4	9	2.52746	110.1493	23.651	198.00745	18.13294	3.4	0.184	21.49329	
5	10	22.45607	952.6003	37.0066	198.0156	18.22526	3.09	0.19	19.12167	
		6.11684	169.8914	36.8403	198.00944	18.1394	3.	0.192	20.53368	
		1.72379	327.9172	39.3546	198.01097	18.15671	3.17	0.242	21.90879	
8	8 16 92		1401.0607	68.7818	198.02279	18.27422	3.11	0.148	17.58246	
9	17	2.75675	341.0761	49.0219	198.01219	18.15809	3.2	0.118	21.399	
10	18	10.6062	723.0118	61.9081	198.01667	18.19989	3.09	0.204	19.9361	
11	19	6.85334	940.5421	58.9404	198.01804	18.22377	3.15	0.157	20.41024	
12	22	1.40926	184.3319	51.9854	198.0113	18.14087	2.48	0.096	22.12752	
13	23	5.38546	1487.7754	65.1682	198.02305	18.28376	3.43	0.202	20.67194	
14	24	2.53062	339.2913	61.1851	198.01358	18.1578	3.24	0.236	21.49193	
15	26	3.58167	713.3323	97.6136	198.02072	18.19856	3.54	0.224	21.11479	
16	28	3.18436	1243.2881	87.4619	198.02371	18.25677	3.29	0.205	21.24244	
17	29	9.31715	905.3412	93.5293	198.02176	18.21965	3.3	0.202	20.07679	
18	30	12.44389	494.5825	101.10	198.01941	18.17454	3.1	0.171	19.76261	
19	31	53.53245	876.4261	112.78	198.02375	18.21634	3.02	0.182	18.17846	
20	33	4.93269	142.5302	98.0357	198.01629	18.13594	2.97	0.175	20.76729	
21	34	5.87306	13.1986	99.4638	198.01544	18.12174	3.21	0.114	20.57784	-
Total:	9,336	Visible: 9,3	36 Selecte	d: 0						

CONFRONTO


 Dato che avevamo tre immagini distinte per ogni filtro, abbiamo incrociato le tabelle di queste tre immagini così da ottenere, per ciascun filtro, una unica tabella con tutte le stelle in quella banda.

CONFRONTO

• Alla fine, si incrociano la tabella del filtro G con quella del filtro R, e quella del filtro I.


In questa maniera, si ottengono i dati per costruire un grafico G-R e un grafico R-I.

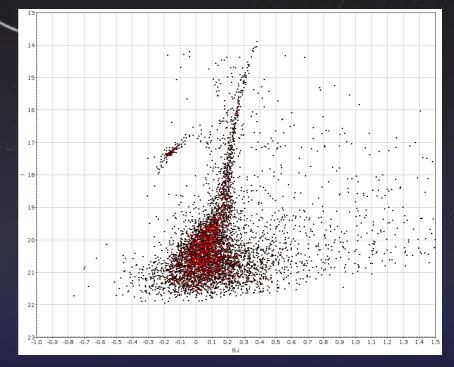
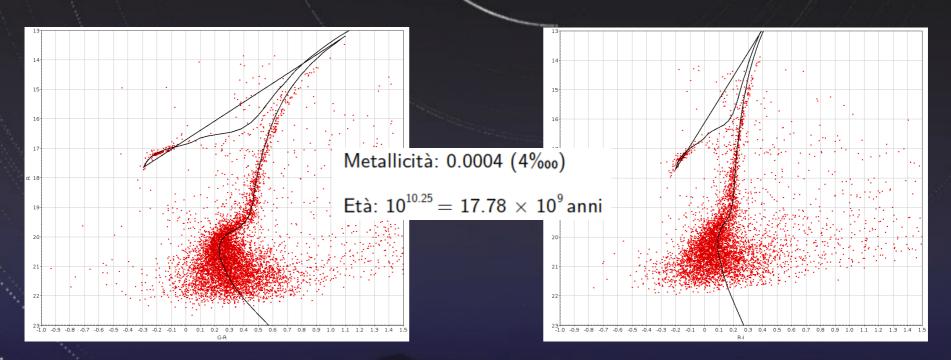
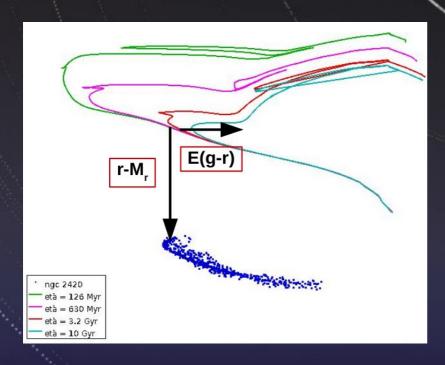
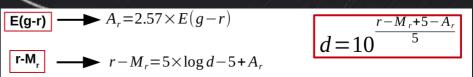


Table Browser for 5: M53g-r_corretto																				
	NUMBER_1	FLUX_BEST_1	X_IMAGE_1	Y_IMAGE_1	ALPHA_J2000_1	DELTA_J2000_1	FWHM_IMAGE_1	ELLIPTICITY_1	Magnitude_1	NUMBER_2	FLUX_BEST_2	X_IMAGE_2	Y_IMAGE_2	ALPHA_J2000_2	DELTA_J2000_2	FWHM_IMAGE_	2 ELLIPTICITY_	2 Magnitude_2	Separation	
1	1	24.61553	182.2453	24.1554	198.00807	18.14085	3.05	0.126	19.02198	3	45.76715	178.9648	11.6061	198.00808	18.14084	2.84	0.017	18.34862	0.06336	
2	9	2.52746	110.1493	23.651	198.00745	18.13294	3.4	0.184	21.49329	5	3.06807	106.7843	11.1045	198.00746	18.13292	3.35	0.14	21.28284		
3	10	22.45607	952.6003	37.0066	198.0156	18.22526	3.09	0.19	19.12167	1	34.84538	949.1977	24.4037	198.01559	18.22527	3.	0.09	18.64464	0.03891	
4	12	6.11684	169.8914	36.8403	198.00944	18.1394	3.	0.192	20.53368	8	7.50069	166.7794	24.3163	198.00946	18.1394	2.81	0.029	20.31225		
5	16	92.68678	1401.0607	68.7818	198.02279	18.27422	3.11	0.148	17.58246	13	340.9486	1397.4741	56.3765	198.0228	18.27422	3.3	0.115	16.16828		
6	17	2.75675	341.0761	49.0219	198.01219	18.15809	3.2	0.118	21.399	14	3.27506	337.8104	36.6918	198.01222	18.15808	3.36	0.08	21.21195	0.12341	41.17
7	18	10.6062	723.0118	61.9081	198.01667	18.19989	3.09	0.204	19.9361	17	13.99979	719.7217	49.3263	198.01667	18.1999	2.92	0.106	19.6347	0.03748	
8	19	6.85334	940.5421	58.9404	198.01804	18.22377	3.15	0.157	20.41024	15	9.70527	937.2122	46.4141	198.01804	18.22379	3.18	0.119	20.03248		
9	23		1487.7754	65.1682	198.02305	18.28376	3.43	0.202	20.67194	21	6.66071	1484.116	52.6265	198.02305	18.28376	3.57	0.194	20.4412	0.03434	_
10	24	2.53062	339.2913	61.1851	198.01358	18.1578	3.24	0.236	21.49193	18	8.14069	335.7894	48.9808	198.01363	18.15777	2.89	0.048	20.22335	0.2033	-11 17
11	26	3.58167	713.3323	97.6136	198.02072	18.19856	3.54	0.224	21.11479	34	4.22616	709.9182	85.094	198.02073	18.19856	3.31	0.09	20.93513	0.02838	41.17
12	28		1243.2881	87.4619	198.02371	18.25677	3.29	0.205	21.24244	25	3.50591	1239.8303	74.8636	198.0237	18.25679	3.1	0.138	21.138	0.06617	41.17
13	29	9.31715	905.3412	93.5293	198.02176	18.21965	3.3	0.202	20.07679	26	11.2223	901.968	81.0476	198.02177	18.21966	3.04	0.1	19.8748	0.04192	
14	30	12.44389	494.5825	101.1096	198.01941	18.17454	3.1	0.171	19.76261	29	16.6538	491.397	88.532	198.01941	18.17455	2.84	0.077	19.44622	0.04154	
15	31	53.53245	876.4261	112.7892	198.02375	18.21634	3.02	0.182	18.17846	28	143.562	873.0311	100.33	198.02377	18.21634	3.04	0.078	17.1074	0.04092	-11 /
16	33	4.93269	142.5302	98.0357	198.01629	18.13594	2.97	0.175	20.76729	31	5.47825	139.4186	85.4026	198.01629	18.13595	2.58	0.202	20.6534	0.01721	41.17
17	34	5.87306	13.1986	99.4638	198.01544	18.12174	3.21	0.114	20.57784	33	7.83629	10.0173	86.8881	198.01545	18.12173	2.93	0.048	20.26472	0.0573	-11 /
18	39	3.23793	181.0828	117.9985	198.0189	18.14002	2.94	0.176	21.22433	39	3.64007	177.8673	105.57	198.01892	18.14001	2.88	0.083	21.09723		-11 17
19	48		1696.4657	134.902	198.03275	18.30613	3.16	0.186	21.54399	47	2.83746	1692.7307	122.49	198.03276	18.30613	3.4	0.237	21.36767	0.01516	41.17
20	50	4.66089	751.3687	148.3098	198.02688	18.20236	3.29	0.236	20.82883	53	5.34079	747.9871	135.86	198.02689	18.20236	3.09	0.091	20.68099	0.05111	41.17
21	52	5.15513	1321.1573	150.5285	198.03161	18.26484	3.29	0.154	20.7194	54	6.05399	1317.5255	137.96	198.0316	18.26484	3.25	0.104	20.5449	0.03292	
Total: 7	7.441 Visi	ible: 7,441	Selected: 0																	

GRAFICO


• Si visualizzano quindi tramite Topcat le tabelle finali, ottennendo i grafici colore-magnitudine.


DATI RICAVABILI


 Sovrapponendo ai grafici le isocrone teoriche (che variano in base a età e metallicità), si può ricavare un'approssimazione dell'età e della metallicità dell'ammasso in base a quella che meglio combacia.

DATI RICAVABILI

• In base agli spostamenti sugli assi da eseguire per far coincidere l'isocrona con il grafico, si può calcolare la distanza dell'ammasso.

$$\begin{array}{lll} \text{G-R:} & E_{(g\text{-}r)} = -0.02 & d = 18.2 \text{ kpc} \\ & r\text{-M}_r = 16.25 & d = 16.2 \text{ kpc} \\ & \text{R-I:} & E_{(r\text{-}i)} = 0.02 & d = 16.2 \text{ kpc} \\ & i\text{-M}_i = 16.1 & & & & & & & & & & & \\ \text{Media:} & 17.2 \text{ kpc} & \text{Valore reale:} & 17.8 \text{ kpc} & \text{Errore:} & 0.6 \text{ kpc} & (3.4\%) \end{array}$$

Grazie per l'attenzione!