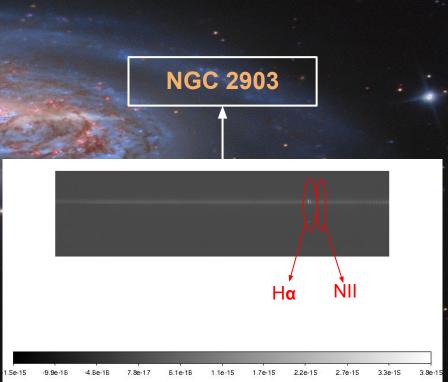
IL CIELO COME LABORATORIO

Matteo Ceola Paola Colombo

Emma Menegaldo Andrea Sanfilippo

23-26 marzo 2022 Osservatorio Astrofisico di Asiago

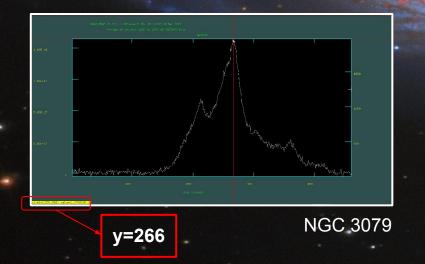
CURVA DI ROTAZIONE E MASSA DELLE GALASSIE NGC 3079 E NGC 2903

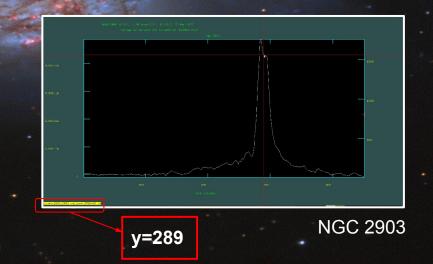


PROCEDIMENTO

- 1. ANALIZZARE LO SPETTRO DELLE GALASSIE
- 2. DETERMINARE IL CENTRO DELLE GALASSIE
- 3. MISURARE LA POSIZIONE DELLE RIGHE Hα E N II IN FUNZIONE DELLA DISTANZA DAL CENTRO
- 4. RICAVARE LE VELOCITÀ CON LA FORMULA DEL REDSHIFT
- 5. TROVARE L'INCLINAZIONE DELLE GALASSIE
- 6. CALCOLARE LE VELOCITÀ CORRETTE TRAMITE L'INCLINAZIONE
- 7. RICAVARE IL GRAFICO DELLA CURVA DI ROTAZIONE
- 8. CALCOLARE LA MASSA DELLE GALASSIE CON IL TEOREMA DEL VIRIALE

SPETTRI DELLE GALASSIE

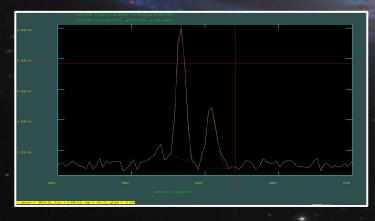


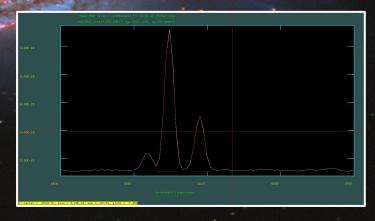


IL CENTRO DELLE GALASSIE

Utilizzando il programma IRAF selezioniamo una regione continua dello spettro e ne facciamo il grafico.

Il picco del grafico indica il valore in pixel delle y dello spettro in cui si trova il centro

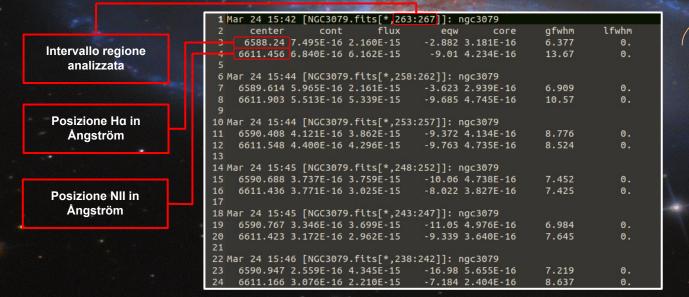




LA POSIZIONE DELLE RIGHE Hα E N II

A partire dalla linea y del centro, selezioniamo l'intervallo dello spettro contenente le righe Ha e NII ottenendo un grafico dell'intensità delle due.

In seguito abbiamo misurato la lunghezza d'onda λ di ogni picco in Angstrom Å considerando la somma di 3 o 5 spettri consecutivi per volta



NGC 3079 - nsum=5

NGC 2903 - nsum=3

CREAZIONE TABELLA

Creiamo una tabella inserendo gli intervalli considerati con le rispettive lunghezza d'onda

1 173 177 6592.634 6613.881 2 178 182 6593.491 6613.327 3 183 187 6592.629 6614.306 4 188 192 6591.598 6613.240 5 193 197 6592.085 6612.587 6 198 202 6591.854 6612.165 7 203 207 6591.321 6612.028 8 208 212 6591,460 6612,058 9 213 217 6591.081 6611.625 10 218 222 6590.914 6611.672 11 223 227 6590.908 6611.452 12 228 232 6590.563 6611.320 237 6590.277 6611.668 14 238 242 6590.947 6611.166 15 243 247 6590.767 6611.423 16 248 252 6590.688 6611.436 17 253 257 6590.408 6611.548 18 258 262 6589.614 6611.903 19 263 267 6588.240 6611.456 20 268 272 6587.321 6606.930 21 273 277 6586,453 6605,817 22 278 282 6586.119 6606.249 23 283 287 6585.494 6606.293 24 288 292 6585.193 6605.006 25 293 297 6585.042 6605.483 302 6584.738 6604.729 27 303 307 6584.678 6605.415 28 308 312 6584.674 6605.558 29 313 317 6584.411 6604.626 30 318 322 6583.837 6604.286 31 323 327 6583.419 6604.196 32 328 332 6583.458 6604.620 33 333 337 6583.501 6604.145 34 338 342 6583.224 6604.208 347 6584.110 6604.936 36 348 352 6583.945 6604.421 357 6584.052 6605.094 38 358 362 6584.105 6605.928 39 363 367 6583.766 6604.256 40 368 372 6583,763 6603,458 41 373 377 6583.836 6603.089 42 378 382 6583.491 6604.314 43 383 387 6583.719 6604.597 392 6583.539 6605.229 48 408 412 6582.675 6604.244

LA VELOCITÀ A PARTIRE DAL REDSHIFT

Trasformiamo le lunghezze d'onda in velocità utilizzando la formula del redshift

$$z = \frac{\lambda - \lambda_0}{\lambda_0} = \frac{v}{c}$$

$$\lambda_0$$
(Ha)=6563, λ_0 (NII)=6584 c=300000 km/s

Calcoliamo il valor medio dei vari intervalli di pixel e li convertiamo in secondi d'arco sottraendo la distanza dal centro della galassia

CONVERSIONE SECONDI D'ARCO IN kpc

Applichiamo la Legge di Hubble per calcolare la distanza utilizzando la velocità di recessione (ovvero quella nel centro della galassia)

$$d = \frac{v_r}{H_0} \quad (Mpc) \qquad H_0 = 72 \, \text{km s}^{-1} \, \text{Mpc}^{-1}$$
$$s = \frac{d \times 10^3}{206265} \quad (\text{kpc/''})$$

	v _r (km/s)	d (Mpc)	s (kpc/")
NGC 3079	1154	16,0278	0,0777
NGC 2903	563	7,819	0,0379

Convertiamo i raggi da secondi d'arco a kpc attraverso il valore s ottenuto

$$r(kpc)=r('')\times scala(kpc/'')$$

TABELLA TOPCAT

000

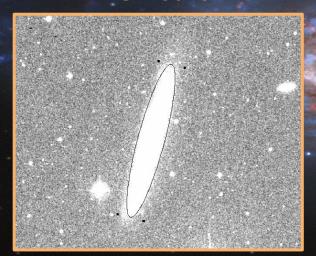
Utilizziamo il programma TOPCAT per creare una tabella dove inseriamo tutti i valori calcolati

	coll	col2	col3	col4	vHa	vN2	r	r(kpc)
1	174	178	6592.765	6615.157	1360.58205	1419.66889	-90	-6.993
2	179	183	6593.126	6613.211	1377.08365	1330.99939	-85	-6.6045
3	184	188	6592.514	6613.024	1349.10864	1322.47874	-80	-6.216
4	189	193	6592.033	6613.463	1327.12174	1342.48177	- 75	-5.8275
5	194	198	6592.061	6612.271	1328.40165	1288.16829	-70	-5.439
6	199	203	6591.821	6612.021	1317.43105	1276.77704	- 65	-5.0505
7	204	208	6591.334	6611.962	1295.16989	1274.0887	-60	-4.662
8	209	213	6591.478	6611.777	1301.75225	1265.65917	-55	-4.2735
9	214	218	6591.094	6611.77	1284.1993	1265.34022	-50	-3.885
10	219	223	6590.769	6611.525	1269.34329	1254.17679	- 45	-3.4965
11	224	228	6590.821	6611.255	1271.72025	1241.87424	- 40	-3.108
12	229	233	6590.646	6611.703	1263.72086	1262.28736	-35	-2.7195
13	234	238	6590.391	6611.508	1252.0646	1253.40219	- 30	-2.331
14	239	243	6590.944	6611.307	1277.34268	1244.24362	- 25	-1.9425
15	244	248	6591.007	6611.408	1280.22246	1248.84569	- 20	-1.554
16	249	253	6590.643	6611.317	1263.58373	1244.69927	-15	-1.1655
17	254	258	6590.434	6611.656	1254.03017	1260.14581	-10	-0.777
18	259	263	6589.702	6612.081	1220.56986	1279.51094	-5	-0.3885
19	264	268	6587.744	6609.842	1131.06811	1177.49089	0	0.
20	269	273	6587.336	6606.884	1112.4181	1042.7096	5	0.3885
21	274	278	6586.481	6605.69	1073.33536	988.30498	10	0.777
22	279	283	6585.862	6605.767	1045.04038	991.81349	15	1.1655
23	284	288	6585.466	6606.417	1026.9389	1021.43074	20	1.554
24	289	293	6585.167	6605.19	1013.27137	965.52248	25	1.9425
25	294	298	6584.824	6605.285	997.59256	969.85115	30	2.331
26	299	303	6584.625	6604.982	988.49611	956.04496	35	2.7195
27	304	308	6584.758	6605.461	994.57565	977.8706	40	3.108
28	309	313	6584.643	6605.629	989.31891	985.52552	45	3.4965
29	314	318	6584.223	6604.75	970.12037	945.47388	50	3.885
30	319	323	6583.684	6604.202	945.48225	920.50425	55	4.2735
31	324	328	6583.552	6604.269	939.44842	923.55711	60	4.662
32	329	333	6583.382	6604.282	931.67759	924.14945	65	5.0505
33	334	338	6583.449	6603.943	934.74021	908.70292	70	5.439
34	339	343	6583.446	6604.792	934.60308	947.38761	75	5.8275
35	344	348	6584.159	6604.844	967.19488	949.75699	80	6.216
36	349	353	6583.848	6604.232	952.97882	921.8712	85	6.6045
37	354	358	6584.129	6605.369	965.82356	973.67861	90	6.993
38	359	363	6584.055	6605.279	962.44096	969.57776	95	7.3815

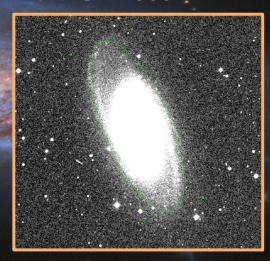
DATI DI NGC 3079

L'INCLINAZIONE DELLE GALASSIE

Per trovare l'inclinazione delle galassie prendiamo le due immagini e troviamo l'ellisse che meglio approssima la nostra immagine. A questo punto ricaviamo i valori dei semiassi maggiore e minore che applichiamo nella seguente formula:


$$i = \arccos\left(\frac{b}{a}\right)$$

A questo punto calcoliamo le nuove velocità con la formula:


$$v_c = \frac{v}{\sin i}$$

L'INCLINAZIONE DELLE GALASSIE

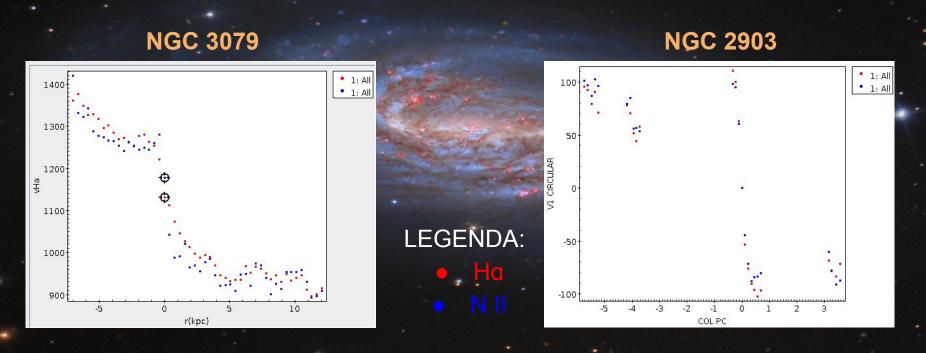
NGC 3079

NGC 2903

$$a = 340$$

 $b = 125$
 $i = 68,43$

TABELLA TOPCAT FINALE


DATI DI NGC 3079

DATI DI NGC 2903

	coll	col2	col3	col4	vHa	vN2	r	r(kpc)	vcHa	vcN2
1	174	178	6592.765	6615.157	1360.58205	1419.66889	-90	-6.993	1380.19462	1440.00318
2	179	183	6593.126	6613.211	1377.08365	1330.99939	-85	-6.6045	1396.93408	1350.06364
3	184	188	6592.514	6613.024	1349.10864	1322.47874	-80	-6.216	1368.55582	1341.42094
4	189	193	6592.033	6613.463	1327.12174	1342.48177	- 75	-5.8275	1346.25198	1361.71049
5	194	198	6592.061	6612.271	1328.40165	1288.16829	-70	-5.439	1347.55034	1306.61905
6	199	203	6591.821	6612.021	1317.43105	1276.77704	- 65	-5.0505	1336.4216	1295.06464
7	204	208	6591.334	6611.962	1295.16989	1274.0887	- 60	-4.662	1313.83955	1292.3378
8	209	213	6591.478	6611.777	1301.75225	1265.65917	-55	-4.2735	1320.51679	1283.78754
9	214	218	6591.094	6611.77	1284.1993	1265.34022	-50	-3.885	1302.71082	1283.46401
10	219	223	6590.769	6611.525	1269.34329	1254.17679	- 45	-3.4965	1287.64066	1272.14069
11	224	228	6590.821	6611.255	1271.72025	1241.87424	- 40	-3.108	1290.05189	1259.66193
12	229	233	6590.646	6611.703	1263.72086	1262.28736	- 35	-2.7195	1281.93719	1280.36743
13	234	238	6590.391	6611.508	1252.0646	1253.40219	- 30	-2.331	1270.11291	1271.35499
14	239	243	6590.944	6611.307	1277.34268	1244.24362	- 25	-1.9425	1295.75536	1262.06524
15	244	248	6591.007	6611.408	1280.22246	1248.84569	- 20	-1.554	1298.67665	1266.73323
16	249	253	6590.643	6611.317	1263.58373	1244.69927	-15	-1.1655	1281.79808	1262.52742
17	254	258	6590.434	6611.656	1254.03017	1260.14581	-10	-0.777	1272.10681	1278.1952
18	259	263	6589.702	6612.081	1220.56986	1279.51094	-5	-0.3885	1238.16417	1297.8377
19	264	268	6587.744	6609.842	1131.06811	1177.49089	0	0.	1147.37227	1194.35639
20	269	273	6587.336	6606.884	1112.4181	1042.7096	5	0.3885	1128.45342	1057.6446
21	274	278	6586.481	6605.69	1073.33536	988.30498	10	0.777	1088.80732	1002.46073
22	279	283	6585.862	6605.767	1045.04038	991.81349	15	1.1655	1060.10446	1006.01949
23	284	288	6585.466	6606.417	1026.9389	1021.43074	20	1.554	1041.74205	1036.06096
24	289	293	6585.167	6605.19	1013.27137	965.52248	25	1.9425	1027.87751	979.35191
25	294	298	6584.824	6605.285	997.59256	969.85115	30	2.331	1011.9727	983.74258
26	299	303	6584.625	6604.982	988.49611	956.04496	35	2.7195	1002.74512	969.73864
27	304	308	6584.758	6605.461	994.57565	977.8706	40	3.108	1008.9123	991.87689
28	309	313	6584.643	6605.629	989.31891	985.52552	45	3.4965	1003.57978	999.64145
29	314	318	6584.223	6604.75	970.12037	945.47388	50	3.885	984.1045	959.01614
30	319	323	6583.684	6604.202	945.48225	920.50425	55	4.2735	959.11122	933.68887
31	324	328	6583.552	6604.269	939.44842	923.55711	60	4.662	952.99042	936.78546
32	329	333	6583.382	6604.282	931.67759	924.14945	65	5.0505	945.10756	937.38628
33	334	338	6583.449	6603.943	934.74021	908.70292	70	5.439	948.21434	921.7185
34	339	343	6583.446	6604.792	934.60308	947.38761	75	5.8275	948.07523	960.95728
35	344	348	6584.159	6604.844	967.19488	949.75699	80	6.216	981.13683	963.3606
36	349	353	6583.848	6604.232	952.97882	921.8712	85	6.6045	966.71585	935.0754
37	354	358	6584.129	6605.369	965.82356	973.67861	90	6.993	979.74574	987.62487
38	359	363	6584.055	6605.279	962.44096	969.57776	95	7.3815	976.31438	983.46528

	coll	col2	col3	R	V	Vc	r (kpc)
1	129	133	6577.102	-158	644.61374	693.13306	-5.9882
2	134	138	6577.09	-153	644.06521	692.54324	-5.7987
3	139	143	6577.107	-148	644.8423	693.37881	-5.6092
4	144	148	6576.866	-143	633.82599	681.53333	-5.4197
5	149	153	6576.731	-138	627.65504	674.89789	-5.2302
6	171	175	6576.25	-116	605.66814	651.25606	-4.3964
7	176	180	6576.814	-111	631.44903	678.97745	-4.2069
8	181	185	6576.563	-106	619.97562	666.64045	-4.0174
9	186	190	6576.146	-101	600.91422	646.14432	-3.8279
10	191	195	6576.566	-96	620.11275	666.78791	-3.6384
11	229	233	6576.966	-58	638.39707	686.44847	-2.1982
12	234	238	6578.872	-53	725.52187	780.13104	-2.0087
13	239	243	6576.589	- 48	621.1641	667.91839	-1.8192
14	272	276	6577.337	-15	655.35578	704.68364	-0.5685
15	277	281	6577.422	-10	659.2412	708.86151	-0.379
16	282	286	6576.962	-5	638.21423	686.25186	-0.1895
17	287	291	6575.317	0	563.01996	605.39781	0.
18	292	296	6573.975	5	501.67606	539.43663	0.1895
19	297	301	6573.604	10	484.71735	521.20146	0.379
20	302	306	6573.49	15	479.50632	515.5982	0.5685
21	307	311	6573.439	20	477.17507	513.09148	0.758
22	312	316	6571.957	25	409.43166	440.2491	0.9475
23	366	370	6574.243	79	513.92656	552.6092	2.9941
24	371	375	6573.894	84	497.97349	535.45536	3.1836
25	376	380	6573.749	89	491.34542	528.32841	3.3731
26	381	385	6573.895	94	498.0192	535.50451	3.5626
27	386	390	6573.88	99	497.33354	534.76724	3.7521
28	391	395	6572.562	104	437.0867	469.9857	3.9416
29	427	431	6573.252	140	468.62715	503.90016	5.306
30	432	436	6573.338	145	472.55828	508.12718	5.4955
31	437	441	6573.161	150	464.46747	499.42739	5.685
32	442	446	6573.058	155	459.75926	494.36479	5.8745
33	447	451	6571.929	160	408.15176	438.87286	6.064

LA CURVA DI ROTAZIONE

Otteniamo la curva di rotazione inserendo il raggio in kpc nell'asse x e la velocità nell'asse y

LA MASSA E IL TEOREMA DEL VIRIALE

$$U+2T=0 \Rightarrow -G\frac{Mm}{R}+2\left(\frac{1}{2}mv^{2}\right)=0$$

$$M=\frac{(\Delta v)^{2}\times R}{G} \quad (kg)$$

	Δv (km/s)	R (kpc)	M (kg)
NGC 3079	220	12,02	2,69 × 10 ⁴¹
NGC 2903	100	6,00	$2,75 \times 10^{40}$

CONCLUSIONI

M _{NGC3079} (M _☉)	M _{NGC2903} (M _⊙)
1,35 × 10 ¹¹	1,38 × 10 ¹⁰

I dati trovati sono più bassi dei valori reali ma ciò si spiega con il fatto che nelle nostre misurazioni non compare l'esterno della galassia e dunque una grossa fetta di essa viene ignorata. I risultati ottenuti sono comunque coerenti con i dati forniti.

Ad esempio, la galassia NGC 2903 ha una massa reale di circa 77 miliardi di masse solari, un valore 5 volte più grande di quello trovato ma comunque dello stesso ordine di grandezza.

CONSIDERAZIONI FINALI

È sicuramente stato un lavoro interessante, non privo di difficoltà dovute sia all'inesperienza con il sistema operativo sia alla complessità intrinseca dell'argomento, che ci ha richiesto doti d'ingegno e di intraprendenza ma anche di collaborazione.

Siamo contenti perché il nostro impegno si è risolto in successo in quanto abbiamo ottenuto valori simili alla realtà (con i dovuti accorgimenti) e dunque possiamo considerare il lavoro conclusosi in maniera positiva.

Vi è sicuramente un margine di miglioramento e precisione che possiamo ottenere ma non possiamo fare a meno di ritenerci soddisfatti.

RINGRAZIAMENTI

Ciroi Stefano

L'università di Padova

L'osservatorio Astrofisico di Asiago

Tutti i professori che ci hanno accompagnato e supervisionato durante l'esperienza de "il Cielo come Laboratorio"

Tutti i programmi utilizzati (non linux e libreoffice)

