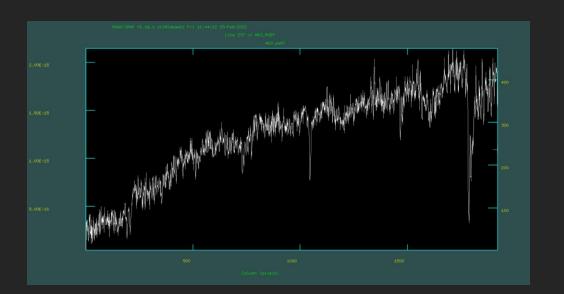
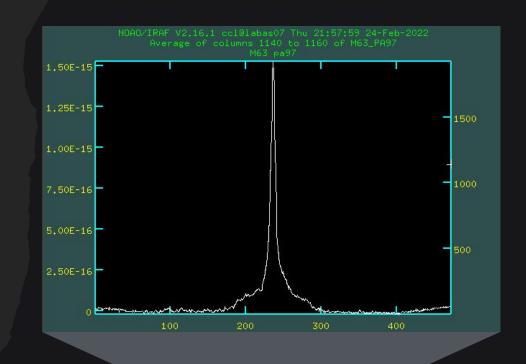
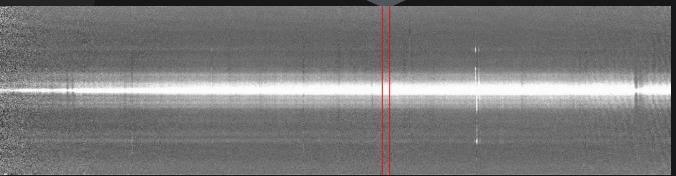
CURVA DI ROTAZIONE DELLA GALASSIA M63

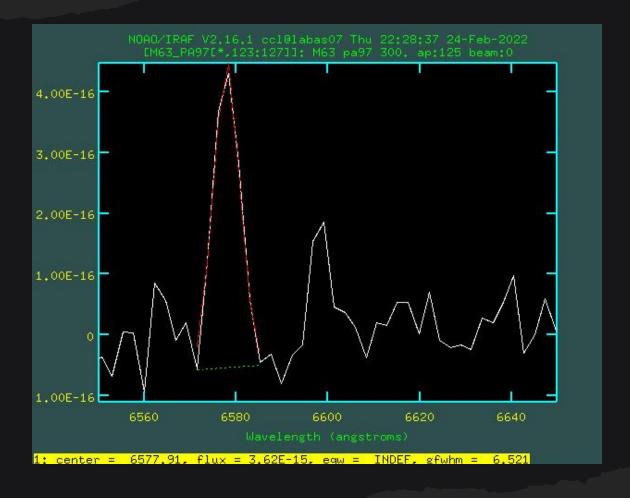
Boscolo Anna, Fronte Laura, Romanato Gaia


OBIETTIVO

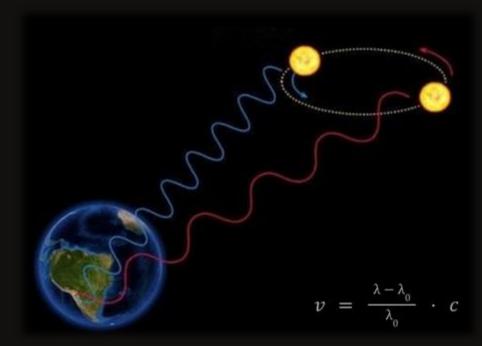

Misurando le posizioni delle righe di emissione di Hα (6563 Å) e [N II] (6584 Å) nello spettro di M63, sfruttando l'effetto Doppler, determinarne la velocità circolare e la massa.

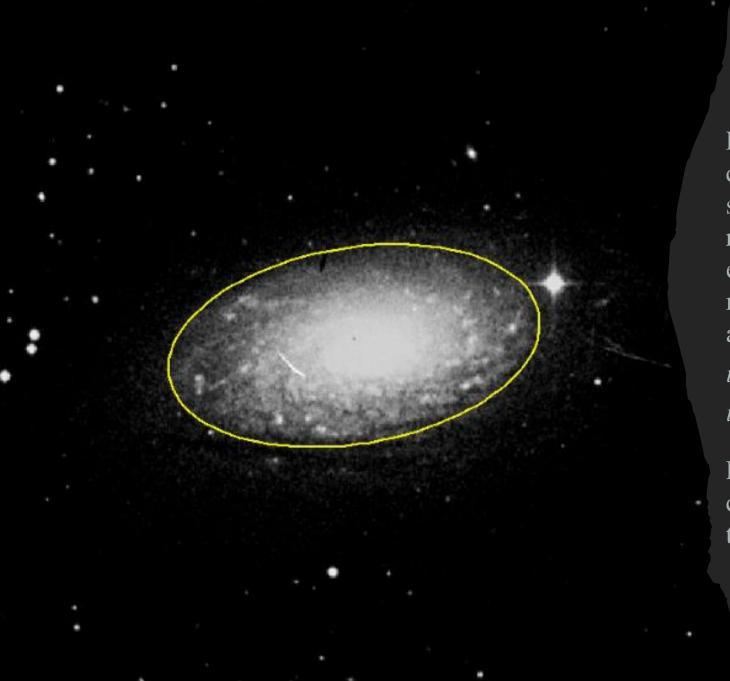

Partendo dallo spettro, con il comando *implot* del programma IRAF ne abbiamo visualizzato il grafico.

Poi abbiamo scelto una sezione così da poter individuare il centro della galassia.


Successivamente abbiamo trovato la coordinata del picco, che corrisponde alla posizione del centro della galassia, ovvero 237 pixel, convertiti in secondi d'arco secondo la scala 1"/px.

Dividendo lo spettro in sezioni orizzontali larghe 5", abbiamo potuto osservare i picchi di emissione in H α e [N II] e determinarne le lunghezze d'onda (λ), che risultano spostate rispetto alle loro reali lunghezze d'onda a causa dell'effetto Doppler.





Determinato il redshift, ovvero lo spostamento delle lunghezze d'onda verso il rosso che avviene quando la sorgente si sta allontanando, e il blueshift, ovvero lo spostamento delle lunghezze d'onda verso il blu che avviene quando la sorgente si sta avvicinando, abbiamo ricavato le diverse velocità di rotazione (in km/s), sempre in funzione del centro della galassia.

Per fare ciò abbiamo ricavato la velocità di recessione (v_r) , ovvero velocità del centro della galassia per poi sottrarla alle altre velocità calcolate, trovando quindi velocità negative per il lato della galassia in avvicinamento, velocità positive per quello in allontanamento e velocità nulla al centro.

Poiché la galassia è inclinata, è necessario correggere le velocità ottenute, abbiamo stimato l'inclinazione della galassia ricavando il valore del semiasse maggiore e minore dell'ellisse che approssima al meglio la forma della galassia e applicando la formula:

i = arccos(b/a)

i = arccos(0.0312557/0.0599603) = 58.58

Poi, dividendo la velocità precedentemente calcolata per il seno dell'angolo i, abbiamo trovato la velocità circolare.

Abbiamo convertito i secondi d'arco in kiloparsec moltiplicando i secondi d'arco per il fattore di scala, ottenuto mediante la formula seguente, dove la distanza *d* è la velocità di recessione diviso la costante di Hubble.

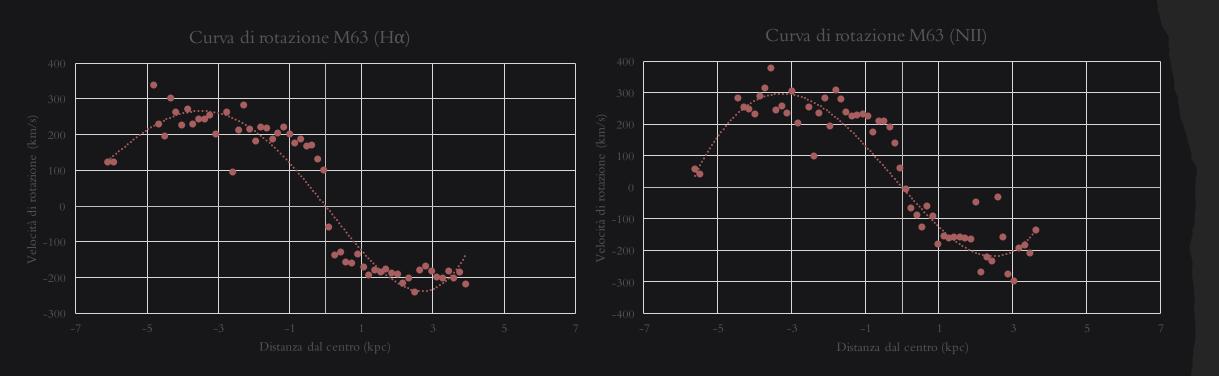
$$s = \frac{d \cdot 10^3}{206265}$$

$$d = \frac{\frac{\nu_r}{H_0}}$$

I NOSTRI VALORI

Ηα

-192	6575,63	577,3274417	123,2009657	-6,104672402
-187	6575,61	576,4132257	122,1296541	-5,945090558
-152	6579,62	759,7135456	336,9276391	-4,832865651
-147	6577,59	000,9200150	228,189507	-4,673889808
-142	6576,96	638,1228097	194,4431902	-4,514913964
-137	6578,94	728,6301996	300,5030431	-4,35593812
-132	6578,23	696,1755295	262,4714797	-4,196962276
-127	6577,53	664,1779674	224,9755721	-4,037986432
-122	6578,39	703,489258	271,0419729	-3,879010589
-117	6577,62	668,2919397	229,7964745	-3,720034745
-112	6577,88	680,1767484	243,7235259	-3,561058901
-107	6577,88	680,1767484	243,7235259	-3,402083057
-102	6578,05	687,9475849	252,8296749	-3,243107213
-97	6577,07	643,150998	200,3354042	-3,08413137
-87	6578,22	695,7184215	261,9358239	-2,766179682
-82	6575,11	553,5578242	95,34686292	-2,607203838
-77	6577,27	052,2931586	211,0485207	-2,448227994
-72	6578,61	713,5456346	282,826401	-2,289252151
-67	6577,31	654,1215907	213,191144	-2,130276307
-62	6576,68	625,3237849	179,4448271	-1,971300463
-57	6577,43	059,0068871	219,6190139	-1,812324619
-52	6577,36	656,4071309	215,8694231	-1,653348775
-47	6576,79	630,3519732	185,3370412	-1,494372932
-42	6577,12	045,4305382	203,0136834	-1,335397088
-37	6577,42	659,1497791	219,083358	-1,176421244
-32	6577,09	644,0652141	201,4067159	-1,0174454
-27	6576,62	622,5811367	176,2308922	-0,858469556
-22	6576,79	630,3519732	185,3370412	-0,699493713
-17	6576,42	613,4389761	165,5177757	-0,540517869
-12	0570,5	617,0958403	169,8030223	-0,381542025
-7	6575,77	583,7269541	130,7001472	-0,222566181
-2	6575,18	556,7575804	99,09645368	-0,063590338
3	6572,19	420,0822794	-61,06463742	0,095385506
8	6570,76	354,7158312	-137,6634201	0,25436135
13	6570,9	361,1153436	-130,1642386	0,413337194
18	6570,38	337,345726	-158,0183414	0,572313038
23	6570,35	335,974402	-159,6253089	0,731288881
28	6570.81	357,0013713	-134,985141	0.890264725
33	6570,12	325,4609173	-171,9453928	1,049240569
38	6569,7	306,26238	-194,4429374	1,208216413
43	0509,98	319,0614048	-179,4445743	1,367192257
48	6569,87	314,0332165	-185,3367884	1,5261681
53	6569,99	319,5185129	-178,9089185	1,685143944
58	6569,78	309.9192442	-190.1576908	1.844119788
63	0509,74	308,0908121	-192,3003141	2,003095632
68	0509,3	287,9780588	-215,8691703	2,162071476
73	0309,30	299,8628676	-201,9421189	2,321047319
78	0508,81	265,5797654	-242,1163056	2,480023163
83	0509,95	317.6900808	-181.0515418	2,638999007
88	6570,18	328,2035654	-168,7314578	2,797974851
93	6569,92	316,3187567	-182,6585092	2,956950695
98	0309,01	302,1484077	-199,2638398	3,115920538
103	0309,34	298,9486515	-203.0134305	3,274902382
108	0509,89	314,9474326	-184,2654767	3,433878226
113	6569.54	298.9486515	-203.0134305	3,59285407
118	0309,34	312,6618924	-186,9437558	3,751829914
123	0509,22	284,3211946	-220,1544169	3,910805757
143	0309,22	204,3211340	-220,1344109	3,510803737


Velocità (km/s) Velocità circolare (km/s) Raggio (kpc)

[NII]

Distanza dal centro (")	λ (Å)	Velocità (km/s)	Velocità circolare (km/s)	Raggio (kpc)
-192	6394,67	486,1786148	59,80221654	-5,625718476
-187	6594,37	472,509113	43,78379688	-5,47921539
-152	6598,88	678,0072904	284,594039	-4,453693793
-147	6598,33	652,9465371	255,2269363	-4,307190708
-142	6598,24	648,8456865	250,4214104	-4,160687623
-137	6597,94	635,1761847	234,4029908	-4,014184537
-132	6598,99	683,0194411	290,4674596	-3,867681452
-127	6599,48	705,346294	316,6308783	-3,721178367
-122	6600,66	759,1130012	379,0300023	-3,574675281
-117	6598,15	644,744836	245,6158845	-3,428172196
-112	0398,44	657,9586877	261,1003569	-3,281669111
-107	6597,99	637,454435	237,0727274	-3,135166026
-102	6599,32	698,0558931	308,0877212	-2,98866294
-97	6397,4	610,5710814	205,5698354	-2,842159855
-87	6598,34	653,4021871	255,7608836	-2,549153684
-82	6395,45	521,7193196	101,4501076	-2,402650599
-77	6598	637,9100851	237,6066747	-2,256147514
-72	6598,91	679,3742406	286,195881	-2,109644428
-67	6597,23	602,8250304	196,4927309	-1,963141343
-62	6599,34	698,9671932	309,1556158	-1,816638258
-57	6598,8	674,3620899	280,3224604	-1,670135172
-52	6598,05	640,1883354	240,2764113	-1,523632087
-47	6597,81	629,2527339	227,4616756	-1,377129002
-42	6597,85	631,0753341	229,5974649	-1,230625917
-37	6597,93	634,7205346	233,8690434	-1,084122831
-32	6597,79	628,3414338	226,3937809	-0,937619746
-27	6596,86	585,9659781	176,73668	-0,791116661
-22	6597,49	614,671932	210,3753613	-0,644613575
-17	6597,52	616,0388821	211,9772032	-0,49811049
-12	6597,19	601,0024301	194,3569416	-0,351607405
-7	6596,2	555,8930741	141,4961568	-0,205104319
-2	6594,7	487,545505	61,4040585	-0,058601234
3	6593,5	432,8675577	-2,669620114	0,087901851
8	6592,32	379,1008505	-65,67540409	0,234404936
13	6591,93	361,3304982	-86,49934964	0,380908022
18	6591,24	329,890644	-123,3417148	0,527411107
23	6592,47	385,9356015	-57,00019420	0,673914192
28	6591,87	358,5965978	-89,70303357	0,820417278
33	6590,18	281,5917375	-179,940131	0,966920363
38	6590,7	305,2855407	-152,1748702	1,113423448
43	6590,57	299,3620899	-159,1161854	1,259926534
48	6590,61	301,1846902	-156,9803961	1,406429619
53	6590,64	302,5516403	-155,3785541	1,552932704
58	6590,54	297,9951397	-160,7180274	1,69943579
63	6590,51	296,6281896	-162,3198693	1,845938875
68	6592,72	397,326853	-44,31751121	1,99244196
73	6588,55	207,3207776	-266,9735444	2,138945045
78	6589,41	246,5066829	-221,0540747	2,285448131
83	6589,19	236,4823815	-232,8009158	2,431951216
88	6592,98	409,1737546	-30,43488085	2,578454301
93	6590,64	302,5516403	-155,3785541	2,724957387
98	6588,42	201,3973269	-273,9148596	2,871460472
103	6588,01	182,7156744	-295,8066998	3,017963557
108	6590	273,3900365	-189,5511827	3,164466643
113	6590,14	279,7691373	-182,0759202	3,310969728
118	6589,65	257,4422843	-208,239339	3,457472813
123	6591,06	321,6889429	-132,9527666	3,603975898

	Ηα	[N II]
λ al centro della galassia (Å)	6573,33	6593,55
Vr (km/s)	472,1925948	435,145808
Vr/sin(i) (km/s)	553,3323388	509,9195758
d (Mpc)	6,558230484	6,043691778
Fattore di scala	0,031795169	0,029300617

Abbiamo costruito il grafico velocità-distanza, sempre in funzione del centro, avendo quindi nell'origine del grafico il centro della galassia considerato fermo.

Abbiamo poi tracciato le linee di tendenza polinomiali di quarto grado che interpolano i punti, con dei fattori R² di 0,9169 per il grafico di Hα e di 0,8874 per il grafico di [N II].

CALCOLO DELLA MASSA DI M63

Abbiamo ricavato la massa della galassia (in kg) calcolando la differenza di velocità fra il centro e il bordo della galassia (Δv), utilizzando il raggio R (in m) ricavato dall'osservazione del grafica, e applicando il Teorema del Viriale.

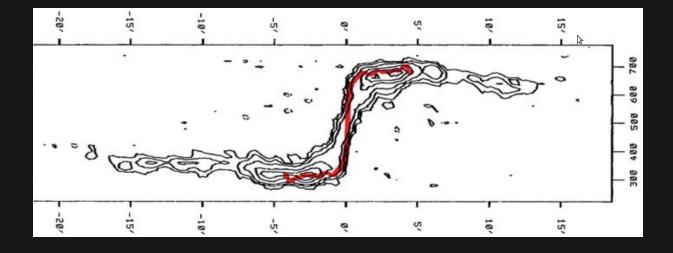
$$R_{H\alpha} = 4.5 \text{ kpc} = 1.39 \text{ x } 10^{20} \text{ m}$$
 $R_{IN III} = 4.0 \text{ kpc} = 1.24 \text{ x } 10^{20} \text{ m}$

$$R_{[N II]} = 4.0 \text{ kpc} = 1.24 \text{ x } 10^{20} \text{ m}$$

Teorema del Viriale:
$$M = \frac{(\Delta v)^2 \cdot R}{G}$$

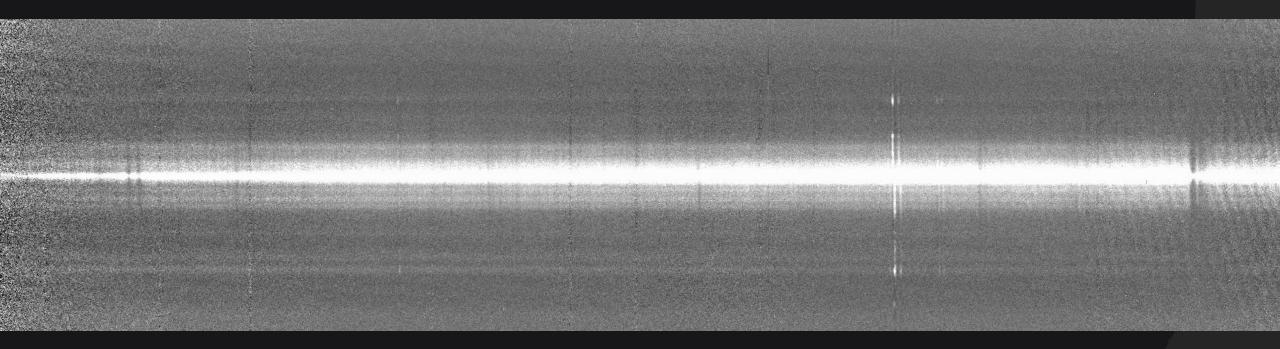
$$M_{H\alpha} = 1,75 \times 10^{41} \text{ kg}$$

$$M_{[N II]} = 2,11 \times 10^{41} \text{ kg}$$


Successivamente abbiamo diviso la massa per quella del Sole ($M_s = 2 \times 10^{30}$), per avere il valore in masse solari.

$$M_{H\alpha} = 87,38 \times 10^9 M_s$$

$$M_{[N II]} = 105,68 \times 10^9 M_s$$


CONCLUSIONI

Concludendo, abbiamo potuto controllare che le misurazioni e i calcoli svolti fossero corretti confrontando la massa ottenuta col valore in letteratura, che è compreso tra le 80 e le 140 miliardi di masse solari. E abbiamo potuto osservare che il grafico distanza-velocità presente in questa ricerca condotta dall'osservatorio Galilei nel 2006 molto simile al grafico dai noi ottenuto.

Una volta conclusa la fase di analisi e sviluppo dati abbiamo avuto la possibilità di osservare la cosiddetta Galassia "Girasole" di persona con il telescopio e abbiamo potuto rilevare noi stesse uno spettro della galassia M63.

