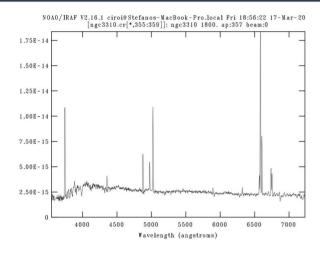
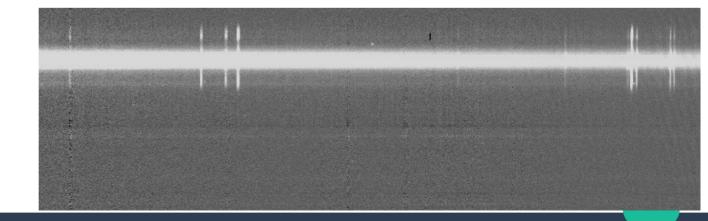

INTRODUZIONE

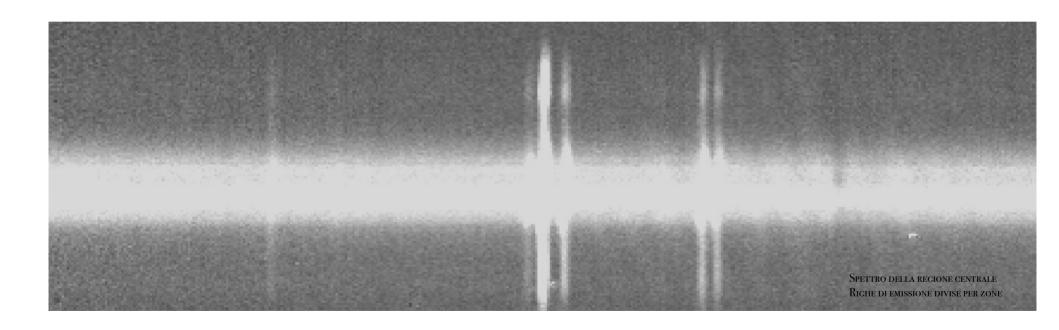
Le stelle si formano all'interno di nubi giganti di gas molecolare e polveri.


A causa di instabilità locali, all'interno della nube il gas si condensa e da origine alle protostelle. Quando si accende la fusione dell'H le stelle si posizionano in MS.

Le stelle più calde e blu (tipi O e B) hanno uno spettro con forte emissione UV, la quale ionizza e riscalda il gas residuo non condensato formando le cosiddette

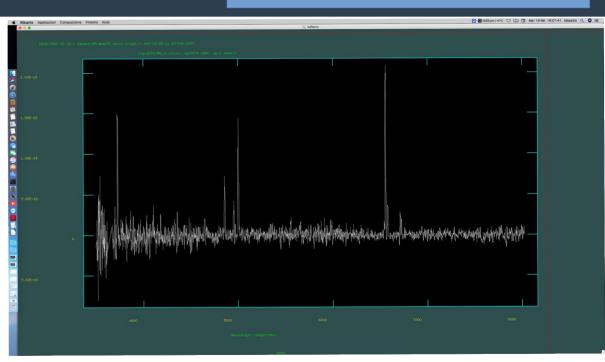
regioni H II, composte principalmente di H, He e altri elementi più pesanti. La composizione chimica dipende dall'origine del gas.


INTRODUZIONE


A sua volta il numero di fotoni ionizzanti dipende da quante stelle si sono formate.

Di conseguenza c'e una relazione fra l'emissione di H e il tasso di formazione stellare, chiamato Star Formation Rate (SFR) ed espresso in unità di MO/anno. L'intensità di queste righe e' direttamente proporzionale al numero di fotoni

ionizzanti (E > 13.6 eV) prodotti dalle stelle più calde.


INTRODUZIONE

INTRODUZIONE

CORREZIONE PER COMPONENTE STELLARE

Gli spettri delle galassie sono la somma degli spettri della componente stellare (continuo+righe di assorbimento) e degli spettri della componente gassosa (righe di emissione).

$\frac{\left(\frac{I(H\alpha)}{I(H\beta)}\right)_{intrinseco}}{I(H\beta)} = \left(\frac{I(H\alpha)}{I(H\beta)}\right)_{osservato} \cdot 10^{(-0.1386A_v)}$ $A_v = \frac{-1}{0.1386} \log \left[2.86 \cdot \left(\frac{I(H\beta)}{I(H\alpha)}\right)_{osservato} \right]$

$$I(H\alpha)_{intrinseco} = I(H\alpha)_{osservato} \cdot 10^{(0.4 \cdot A(H\alpha))}$$

$$A(H\alpha) = A_V \cdot 0.8177$$

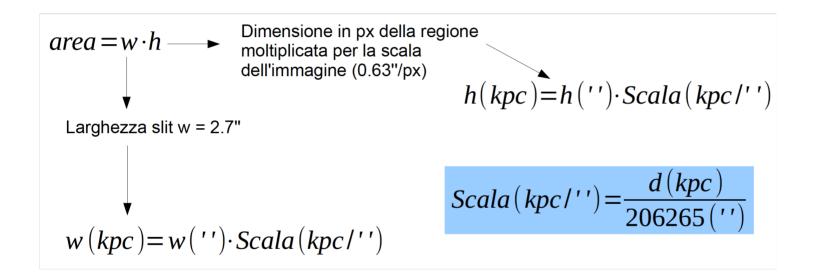
INTRODUZIONE-FORMULE

Le polveri presenti nelle galassie studiate interagiscono con la radiazione emessa da queste sorgenti e attenuano maggiormente la luce blu rispetto a quella rossa, provocando l'arrossamento della radiazione. Questo implica che le righe nella parte rossa dello spettro siano meno attenuate di quelle nella parte blu, quindi cambiano i rapporti tra le righe e in particolare quelli tra le righe di Balmer, di cui e noto il valore teorico, detto. decremento di Balmer. Per correggere si usa la legge di Cardelli et al. (1989).

Distanza della galassia in Mpc con correzione del redshift

$$z = \frac{\lambda - \lambda_0}{\lambda_0}$$

$$d = \frac{C \cdot Z}{H_0}$$


$$H_0 = 72 \text{ km s}^{-1} \text{Mpc}^{-1}$$

Calcolare L (Hα) e SFR

$$L(H\alpha) = 4\pi \cdot d^2 \cdot I(H\alpha)$$
 [erg/s]

$$SFR = 7.9 \cdot 10^{-42} \cdot L(H\alpha) \quad [M_{sun}/anno]$$

$$\Sigma SFR = SFR/area \left[M_{sun} anno^{-1} kpc^{-2} \right]$$

OBIETTIVI

Stimare il tasso di formazione stellare (SFR) annuo di una galassia espresso in masse solari su kpc².

- Ricavare dagli spettri delle galassie i flussi di Hα e Hβ per tutte le regioni
- Calcolare l' estinzione di ogni galassia
- Calcolare il valore corretto del flusso per estinzione di Hα
- Ricavare la distanza di ogni galassia
- Trovare la luminosità di Hα
- Calcolare l' SFR di ogni regione
- Calcolare l' SFR per unità di superficie

NGC 2903

PROCEDIMENTO E RISULTATI

1) Fittare il profilo delle righe con una funzione Gaussiana e ricavare il flusso di $H\beta$ e $H\alpha$ per tutte le regioni di tutte le galassie.

REGIONE	Ηα	Нβ
R1	2.85x10 ⁻¹⁴	6.42x10 ⁻¹⁵
R2	6.21x10 ⁻¹⁴	1.39x10 ⁻¹⁵
R3	1.59x10 ⁻¹⁴	2.71x10 ⁻¹⁵
R4	2.46x10 ⁻¹⁴	5.38x10 ⁻¹⁵
R5	3.51x10 ⁻¹⁴	6.89x10 ⁻¹⁵
R6	1.19x10 ⁻¹⁴	2.74×10 ⁻¹⁵

PROCEDIMENTO E RISULTATI

2) Calcolare l'estinzione di ogni galassia, utilizzando il rapporto tra i flussi di $H\alpha$ e $H\beta$

REGIONE	Ηβ/ Ηα	Av	Α (Ηα)
R1	4.44	1.38	1.13
R2	4.46	1.40	1.14
R3	5.88	2.26	1.85
R4	4.59	1.48	1.21
R5	5.10	1.81	1.48
R6	4.35	1.31	1.07

OBIETTIVI

3) Calcolare il valore corretto per estinzione del flusso di Hα

REGIONE	Ι (Ηα)
R1	8.07x10 ⁻¹⁴
R2	6.21x10 ⁻¹⁴
R3	8.72x10 ⁻¹³
R4	7.50x10 ⁻¹³
R5	1.31x10 ⁻¹³
R6	1.39×10 ⁻¹⁴

PROCEDIMENTO E RISULTATI

- 4) Ricavare la distanza dallo spettro nucleare di ogni galassia
- D= 2.55x10²⁵ cm
- D= 8.25 Mpc

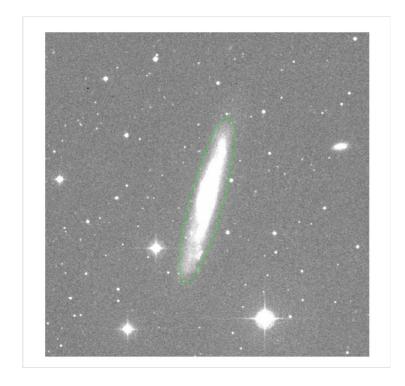
5) Calcolare la luminosità di Hα

REGIONE	L (Hα)
R1	6.58x10 ³⁸
R2	5.07x10 ³⁸
R3	7.13x10 ³⁹
R4	6.13x10 ³⁹
R5	8.33x10 ³⁸
R6	2.16x10 ³⁸

6) Calcolare il tasso di formazione stellare (SFR) di ogni regione e quello per unita di superficie.

REGIONE	SFR
R1	5.21x10 ⁻³
R2	4.00x10 ⁻³
R3	6.00x10 ⁻²
R4	4.8x10 ⁻²
R5	6.58x10 ⁻³
R6	2.06x10 ⁻³

7) Calcolare l'area della galassia per confrontare i valori di SFR


R= 340"= 13.94 kpc

 $A = 610.5 \text{ kpc}^2$

Media SFR= 0.142 M_s/anno x kpc²

SFR= 86.691 M_s/anno

Scala= 0.041

PROCEDIMENTO E RISULTATI

1) Fittare il profilo delle righe con una funzione Gaussiana e ricavare il flusso di $H\beta$ e $H\alpha$ per tutte le regioni di tutte le galassie.

REGIONE	Ηα	Нβ
R1	1.22×10 ⁻¹⁴	2.33x10 ⁻¹⁵
R2	3.49x10 ⁻¹⁴	6.85x10 ⁻¹⁵
R3	2.41x10 ⁻¹⁴	4.13x10 ⁻¹⁵
R4	2.66x10 ⁻¹⁴	1.98x10 ⁻¹⁵
R5	2.31x10 ⁻¹⁴	3.69x10 ⁻¹⁵
R6	3.77x10 ⁻¹⁴	5.59x10 ⁻¹⁵
R7	1.15x10 ⁻¹⁴	1.97x10 ⁻¹⁵
R8	1.06x10 ⁻¹⁴	2.24x10 ⁻¹⁵
R9	1.53x10 ⁻¹⁴	4.98x10 ⁻¹⁵

PROCEDIMENTO E RISULTATI

2) Calcolare l'estinzione di ogni galassia, utilizzando il rapporto tra i flussi di $H\alpha$ e $H\beta$.

REGIONE	Ηβ/Ηα	Av	Α (Ηα)
R1	5.24	0.14	1.56
R2	5.41	1.99	1.63
R3	5.84	0.17	1.8
R4	13.4	4.82	3.94
R5	6.25	2.45	2.00
R6	6.75	2.69	2.20
R7	5.81	2.22	1.82
R8	4.73	1.58	1.29
R9	3.07	0.22	0.18

PROCEDIMENTO E RISULTATI

3) Calcolare il valore corretto per estinzione del flusso di Hα.

REGIONE	Ι (Ηα)
R1	5.13x10 ⁻¹⁴
R2	1.57x10 ⁻¹³
R3	1.26x10 ⁻¹³
R4	1.00x10 ⁻¹²
R5	1.46x10 ⁻¹³
R6	2.86x10 ⁻¹³
R7	6.11×10 ⁻¹⁴
R8	3.49x10 ⁻¹⁴
R9	1.81x10 ⁻¹⁴

PROCEDIMENTO E RISULTATI

4) Ricavare la distanza dallo spettro nucleare di ogni galassia

$$D = 6.64 \times 10^{25} \text{ cm}$$

5) Calcolare la luminosità di Hα

REGIONE	L (Hα)
R1	1.39x10 ³⁹
R2	4.25x10 ³⁹
R3	3.40x10 ³⁹
R4	2.70x10 ⁴⁰
R5	3.95x10 ³⁹
R6	7.73x10 ³⁹
R7	1.65x10 ³⁹
R8	1.93x10 ³⁹
R9	4.88x10 ³⁸

PROCEDIMENTO E RISULTATI

6) Calcolare il tasso di formazione stellare (SFR) di ogni regione e quello per unita di

superficie

REGIONE	SFR
R1	1.10x10 ⁻²
R2	3.40x10 ⁻²
R3	2.70x10 ⁻²
R4	2.10x10 ⁻¹
R5	3.10x10 ⁻²
R6	6.00x10 ⁻²
R7	1.30x10 ⁻²
R8	1.50x10 ⁻²
R9	3.86x10 ⁻³

7) Calcolare l'area della galassia per confrontare i valori di SFR

R= 240"= 18.48 kpc

 $A = 1072 \text{ kpc}^2$

Media SFR= 0.193 M_s/anno x kpc²

SFR= 206.90 M_s/anno

Scala= 0.077

- Non sempre la misura dei flussi delle righe negli spettri e stata facilmente determinabile, pertanto e' stato necessario compiere più misurazioni e' farne una media;
- La grande quantità di dati ha richiesto una precisa organizzazione all' interno del gruppo;
- Trattandosi di una stima i valori ottenuti possono avere un ampio margine di errore;
- E' stato fondamentale il confronto con valori teorici di riferimento e dati certi conosciuti.

LINDA MATILDE LAURA