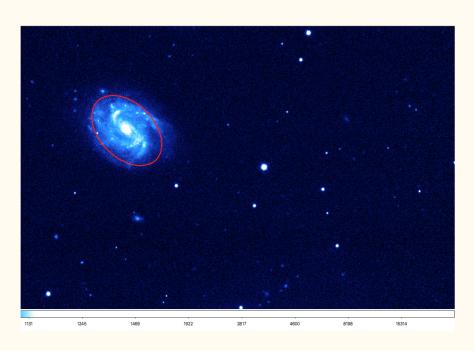
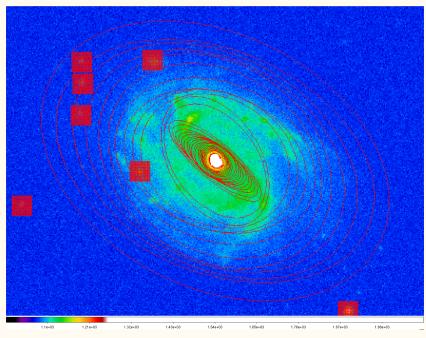

Classificazione morfologica della galassia NGC 201

Scopo

Determinare la classificazione morfologica della galassia NGC 201 del gruppo NCG 7 contenente quattro galassie nella costellazione del Cetus




Immagini

La classificazione è stata compiuta su tre immagini in tre diverse bande: U, I, R. Queste bande fanno parte del sistema fotometrico UGRIZ. Le immagini sono state ottenute da un telescopio a terra di diametro 2,5 m.

Banda	Lunghezza d'onda del picco (nm)	FWHM
U	365	66
G	464	128
R	658	138
I	806	138
Z	900	-

Procedura

Parametri dell'ellisse

- Centro: coincide con il bulge nel nostro caso
- Semiassi
- Ellitticità (e = 1 b/a)
- PA (position angle): l'orientamento dell'ellisse misurato da nord verso est con un angolo da 0 a 180 0 da -90 a +90

Istruzione di conversione

```
* isophote> tdump gal-03-r.tab col='sma,tflux_e,npix_e' > parametri.txt
```

Converte il file .tab in .txt al fine di renderlo utilizzabile dal programma python per elaborare i dati in forma tabulare.

Raccolta dati

SMA	R	%7.2f	pixel
TFLUX_E	R	%12.5g	im
NPIX_E	I	%6d	1111
IMAGE t HCG	07_0174_g.	fits	
1.022225	89	47.	5 _I
1.124447	89	47.	-5
1.236892	89	47.	-5
1.360581	89	47.	5
1.496639	89	47.	5
1.646303	159	41.	9
1.810934	159	41.	9
1.992027	159	41.	9
2.19123	193	48.	11
2.410353	260	21.	15 ♥
2.651388	326	69.	19

- 1. Raccolta dei dati da Iraf e tabulazione mediante funzione (*)
- 2. Eliminazione doppioni
- 3. Controllo dell'ordine crescente

Programma per il calcolo dei parametri

```
3
4 scale = 0.4
5 texp = 53.9
6 sky = 1116.5
7 sig_sky = 4.9
8 gain = 4.895
9 n = 1.
```

I parametri da determinare sono il semiasse maggiore di ciascuna isofota e la loro relativa luminosita'.

```
DBJECT = '82 S ' / e.g., 'stripe 50.6 degrees, north strip'

SEXPTIME= '53.907456' / Exposure time (seconds)

QUINOX = '2000.0 ' / Equinox of the TCC coordinates (years)

PSF_B_2G= 0.0569266527891159 / Ratio of gaussian 2 to gaussian 1 at origin

PSFCTS = 16.1507663726807 / PSF counts

GAIN = 4.03499984741211 / Gain averaged over all amplifiers (e/DN)

DARK_VAR= 1.82249999046326 / combined variance from dark cur. and read noise
```

Programma per il calcolo dei parametri

```
11
    f = open('parametri1i.txt','r')
13
    data = np.genfromtxt(f)
    x1 = data[:,0]
    x2 = data[:,1]
    x3 = data[:,2]
20
    a = x1 * scale
    inten = (x2 - x3 * sky)/texp
    area = x3 * (scale)**2
    sma = 0
    intsup = inten[0]/area[0]
    err_1 = x2[0] / (gain * n)
    err_2 = sig_sky * x3[0]
    relerr = np.sqrt(err_1 + (err_2)**2) / (inten[0] * texp)
```

$$a=sma\cdot scale$$

$$F_{i} = \frac{F_{tot,i} - N_{px} \cdot I_{cielo}}{T_{esposizione}}$$

Programma per il calcolo dei parametri

```
q = open('sma int1i','w')
    g.write('{}\n'.format('# sma intsup relerr'))
    g.write('{:7.3f} {:11.4f} {:9.5f}\n'.format(sma,intsup,relerr))
    for i in range(0,np.size(x1)-1):
        sma = (a[i] + a[i+1])/2
        intsup = (inten[i+1] - inten[i])/ (area[i+1] - area[i])
        err_1 = (x2[i+1] - x2[i]) / (gain * n)
        err_2 = sig_sky * (x3[i+1] - x3[i])
        relerr = np.sqrt(err_1 + (err_2)**2)/ ((inten[i+1] - inten[i]) * texp)
        g.write('{:7.3f} {:11.4f} {:9.5f}\n'.format(sma,intsup,relerr))
49
50
    g.close()
    f.close()
```

$$\overline{a_{1,2}} = \frac{a_1 + a_2}{2}$$

$$I_{s1,2} = \frac{F_1 - F_2}{area_1 - area_2}$$

Risultato del calcolo dei parametri

			_
1	# sma int	sup relerr	
2	0.000	83.4184	0.01451
3	0.534	78.6758	0.01671
4	0.768	73.4578	0.02401
5	0.920	69.3704	0.01858
6	1.012	68.6456	0.01875
7	1.114	65.1670	0.02654
8	1.225	59.5431	0.01802
9	1.347	54.8856	0.01936
10	1.482	52.6293	0.01810

I dati in output:

- 1. sma (semi-asse maggiore medio)
- 2. intsup (intensita superficiale)
- 3. relerr (errore relativo)

Determinazione del profilo di brillanza

```
def bdev(Ie, re, r):
         return Ie * np.exp(-7.67 *((r/re)**0.25-1))
     def bexp(Ie,re,r):
         return 5.36 * Ie * np.exp(-1.68 *(r/re))
     def disc(I0,h,r):
         return I0 * np.exp(-r/h)
     def fbdev(Ie, re):
         return 22.66 * Ie * re**2
     def fbexp(Ie, re):
         return 11.93 * Ie * re**2
     def fdisc(I0,h):
         return 2 * np.pi * 10 * h**2
     def bar(Ib, rb, n):
         return Ib * np.exp(-(1.992*n-0.3271)*((r/rb)**(1/n)-1))
56 ▼ def fbar(Ib,rb,n):
         Kn = 2 * np.pi *n * np.exp(bn) * 2*(special.gammainc(2*n,bn)*special.gamma(2*n))/ (bn)**(2*n)
```

$$I_{bulge}(r) = 5,36 \cdot I_e \cdot e^{-1,68 \cdot \frac{r}{r_e}}$$

$$I_{barra}(r) = I_b \cdot e^{-(1,992 \cdot n - 0,3271) \cdot [(\frac{r}{r_b})^{\frac{1}{n}} - 1]}$$

$$I_{disco}(r) = I_o \cdot e^{-\frac{r}{h}}$$

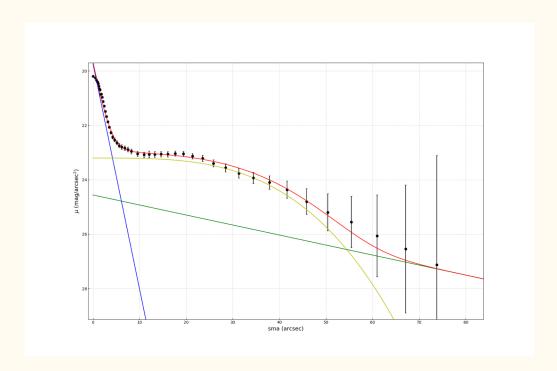
Determinazione del profilo di brillanza

$$F_{disco} = 2 \cdot \pi \cdot I_o \cdot h^2$$

$$F_{bulge} = 11,93 \cdot I_e \cdot r_e^2$$

$$F_{barra} = K(n) \cdot I_b \cdot r_b^2$$

$$\mu_{\textit{tot}} \!=\! -2,\! 5 \!\cdot\! \log \big(F_{\textit{bulge}} \!+\! F_{\textit{barra}} \!+\! F_{\textit{disco}}\big)$$


Adattamento dei parametri

$$I_{bulge}(r) = 5,36 \cdot I_e \cdot e^{-1,68 \cdot \frac{r}{r_e}}$$

$$I_{barra}(r) = I_b \cdot e^{-(1,992 \cdot n - 0,3271) \cdot [(\frac{r}{r_b})^{\frac{1}{n}} - 1]}$$

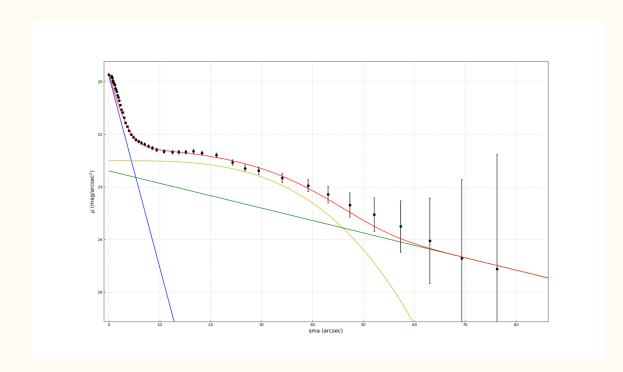

$$I_{disco}(r) = I_o \cdot e^{-\frac{r}{h}}$$

Grafico banda G

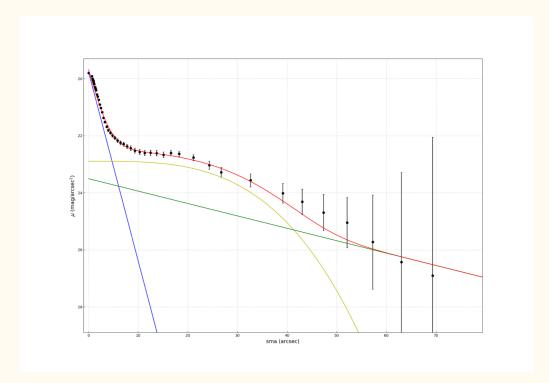

Blu: andamento intensità bulge giallo: andamento intensità barra verde: andamento intensità disco rosso: andamento intensità totale

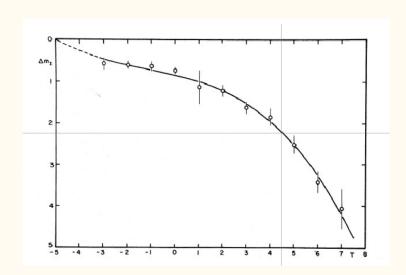
Grafico banda R

Blu: andamento intensità bulge giallo: andamento intensità barra verde: andamento intensità disco rosso: andamento intensità totale

Grafico banda I

Blu: andamento intensità bulge giallo: andamento intensità barra verde: andamento intensità disco rosso: andamento intensità totale

Rapporto B/T

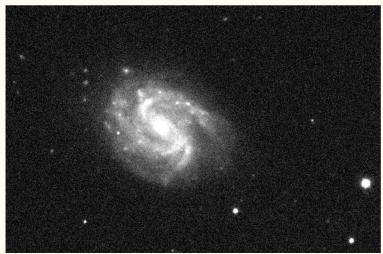

```
106 # rapporto bulge/totale

107 BT = fbexp(Ie,re) / (fbulge + fdisc(I0,h))

108
```

$$B/T = \frac{F_{bulge}}{F_{bulge} + F_{barra} + F_{disco}}$$

Classificazione


Banda	B/T	$\Delta \mathrm{m_{I}}$
G	0,046	3,343
I	0,057	3,113
R	0,046	3,335

$$\Delta m_I = -2.5 \cdot \log \frac{B}{T}$$

			Nu	mei	rical	Hub	ble s	tag	e								
Hubble stage <i>T</i>	-6	-5	-4	-3	-2	-1	0	1	2	3/	4	5	à	7	8	9	10
de Vaucouleurs class ^[4]	сE	Ε	E ⁺	SO-	S0 ⁰	S0 ⁺	S0/a	Sa	Sab	Sb	Sbc	Sc	sk	d Sd	Sdm	Sm	lm
approximate Hubble class ^[5]		Е		50			S0/a	Sa	Sa-b	Sb	Sb-c	-c Sc Sc-I		Sc-Irr	rr Irr I		

Risultati

La galassia NCG 201 rientra nella tipologia SBc, risultato confermato anche dall'analisi visiva e dal confronto con le informazioni presenti nei database delle galassie.

Lavoro conclusivo dell'attivita' "Il cielo come laboratorio"

Ardini Bernardo Campello Samuele Tiozzo Gabriele

Con il sostegno di:

- Prof. Stefano Ciroi
- Prof. Aldo Pegoraro