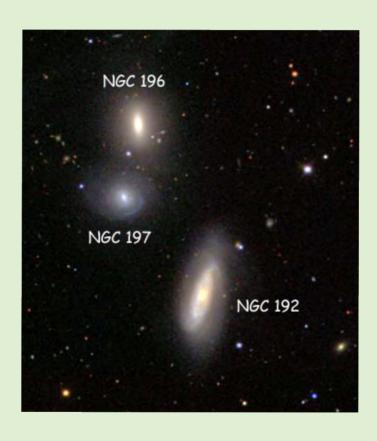
MORFOLOGIA DELLE GALASSIE

Scopo del lavoro

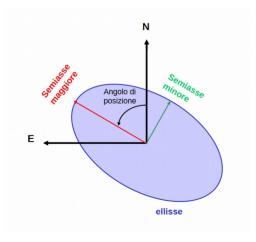
Riconoscere la classificazione delle galassie utilizzando:

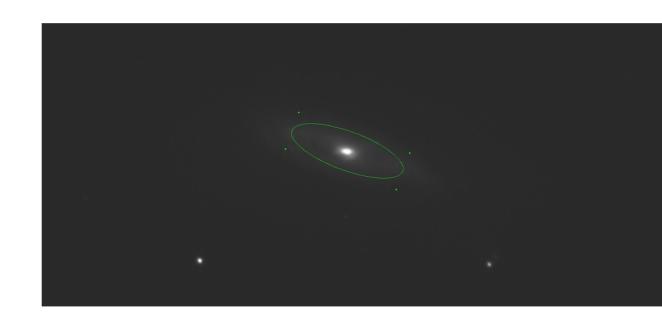

- Isofote, linee con uguale intensita' di luce
- Brillanza superficiale, data dal rapporto tra flusso superficiale e angolo solido unitario
- Profilo di brillanza, ovvero come varia la brillanza superficiale di una galassia ellittica in funzione della distanza dal centro galattico

Come si determina la morfologia di una galassia?

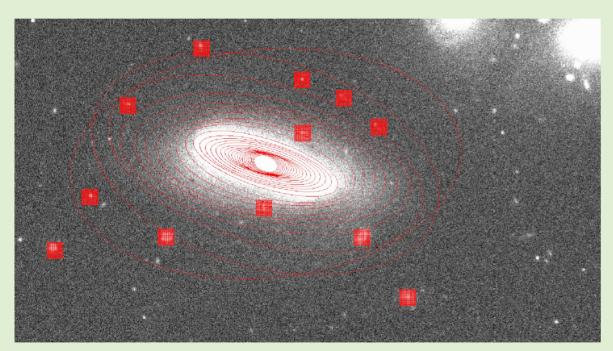
- Costruzione di ellissi per riprodurre le isofote, ricavando semi-asse maggiore e il flusso totale di ogni ellisse
- Costruzione del profilo di brillanza della galassia con scomposizione del profilo in due componenti: bulge e disco
- Determinazione del rapporto B/T e classificazione nella classe morfologica (classificazione di Hubble)

Galassie studiate

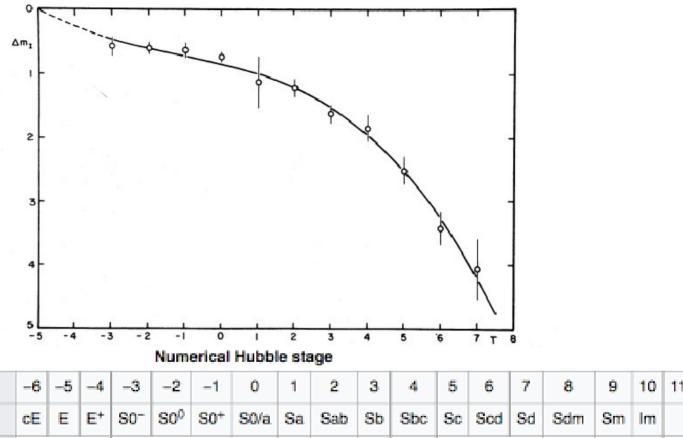




Descrizione del lavoro


Costruzione di un'ellisse che funga da stima iniziale per le isofote (software Iraf). L'ellisse e' descritta da 5 parametri:

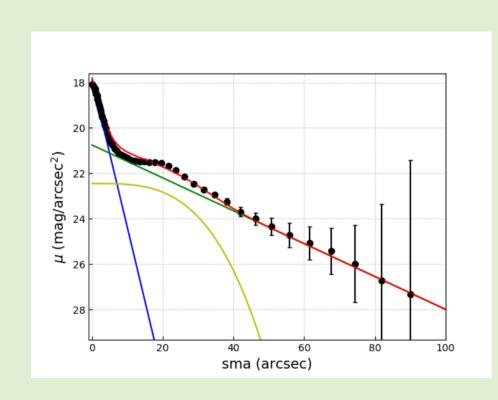
- Ellitticita'
- Angolo di posizione (pa)
- Semiasse maggiore
- Semiasse minore
- Centro


Isofote

Dopo aver mascherato le stelle abbiamo avviato la costruzione delle isofote. Lo stop code e' uguale a 0 quando il fit avviene senza problemi, uguale a 2 quando raggiunge il numero massimo di iterazioni, 4 quando non viene effettuato (software Ellipse)

Attraverso Python abbiamo confrontato il grafico base sperimentale con i grafici delle galassie ottenuti dalle nostre osservazioni

```
LINDEGISTEDED
profilo BD.pv
           1 Ie * np.exp(-7.67 *((r/re)**0.25-1))
def bexp(Ie,re,r):
    return 5.36 * Ie * np.exp(-1.68 *(r/re))
def disc(I0,h,r):
    return I0 * np.exp(-r/h)
     return 22.66 * Ie * re**2
def fbexp(Ie,re):
def fdisc(I0.h):
   return 2 * np.pi * I0 * h**2
r = np.arange(0, np.max(sma)+10, 0.01)
bulge = bexp(Ie,re,r)
fbulge = fbexp(Ie,re)
mub = -2.5 * np.log10(bulge) + cal
mud = -2.5 * np.log10(disc(I0,h,r)) + cal
```

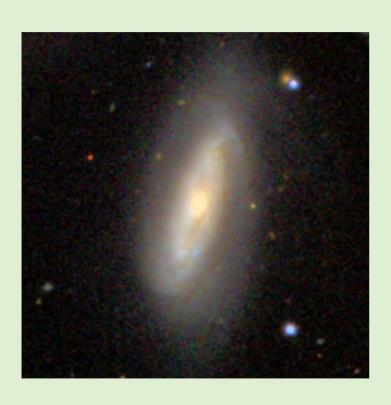


Hubble stage T	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11
de Vaucouleurs class ^[7]	сE	Е	E+	S0 ⁻	S0 ⁰	S0 ⁺	S0/a	Sa	Sab	Sb	Sbc	Sc	Scd	Sd	Sdm	Sm	lm	
approximate Hubble class[8]	E			S0			S0/a	Sa	Sa-b	Sb	Sb-c	Sb-c Sc		Sc-Irr	Irr I			

The use of numerical stages allows for more quantitative studies of galaxy morphology.

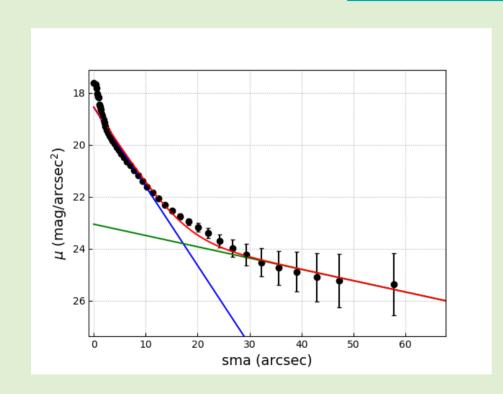
$$\Delta m_1 = -2.5*log(B/T)$$

Brillanza della galassia NGC 192 studiata in R


B/T=0,147

la galassia e' del tipo SBb (spirale barrata di tipo b)

blu: bulge verde: disco

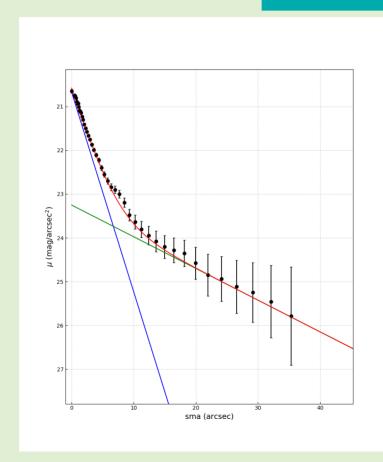

giallo: barra

Galassia NGC 192

Secondo il sito cseligman.com la galassia e' del tipo SBa. E' difficile stabilire correttamente la sua morfologia poiche' e' inclinata rispetto la direzione di osservazione

Brillanza della galassia NGC 196 studiata in l

B/T=0,561


la galassia si posiziona fra 0 e 1, potrebbe essere del tipo S0/a o Sa

Galassia NGC 196

Secondo il sito cseligman.com la galassia e' del tipo Sb0

Brillanza della galassia NGC 197 studiata in G

B/T=0,213

la galassia si posiziona fra 3 e 4, potrebbe essere del tipo SB o SBc

Galassia NGC 197

Secondo il sito cseligman.com la galassia e' del tipo SB

Ringraziamo il dott. Stefano Ciroi per la sua pazienza e collaborazione

Boscolo Meneguolo Francesco

Fabris Nicola

Ferrarese Paolo

Voltolina Francesca

Liceo Veronese-Marconi, Chioggia (VE)