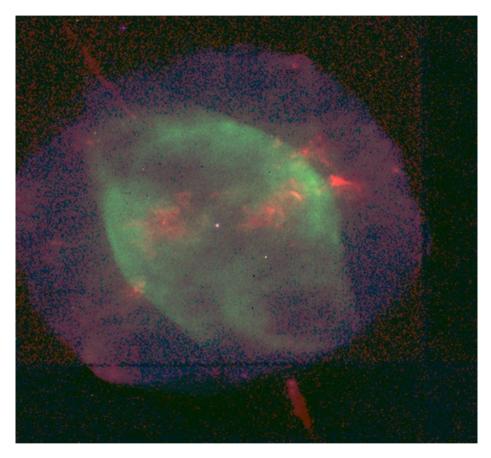
### IL CIELO COME LABORATORIO


ANALISI SPETTROSCOPICA DELLA NEBULOSA NGC7354

KRYZHANOVSKYY Artur, PRENDIN Mattia Gioele, SILVESTRINI Stefano Liceo scientifico "G.Bruno" Mestre, Liceo scientifico "G.Galilei" Dolo

#### NEBULOSA PLANETARIA

- E' la fase finale di vita di una stella
- Al centro di essa e' presente una nana bianca
- Rappresenta gli strati piu' esterni della stella che sono stati espulsi alla fine della sua vita
- E' un gas ionizzato il cui limite è definito dalla circonferenza che deriva dal raggio di Stromgren

### NGC 7354



Ascensione retta 22h 40m 19.9s

Declinazione 61° 17' 8.1"

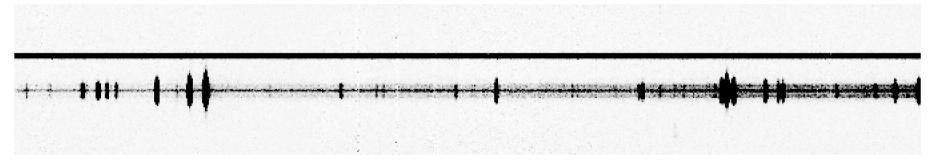
Distanza 4200 a.l

Telescopio Galileo 122cm Osservatorio di Asiago

Spettrografo Boller & Chivens

Reticolo 300 tratti/mm

Fenditura 4.3"


CCD 512x2048 pixel

Intervallo di λ 3400-8100 Å

Osservata il 31 ottobre 2011

Scala spaziale lungo la fenditura 1"/pixel

Tempo di posa 1200 sec



### **PROCEDIMENTO**

E' stato diviso lo spettro bidimensionale in regioni di 5 pixel ottenendo cosi undici spettri monodimensionali

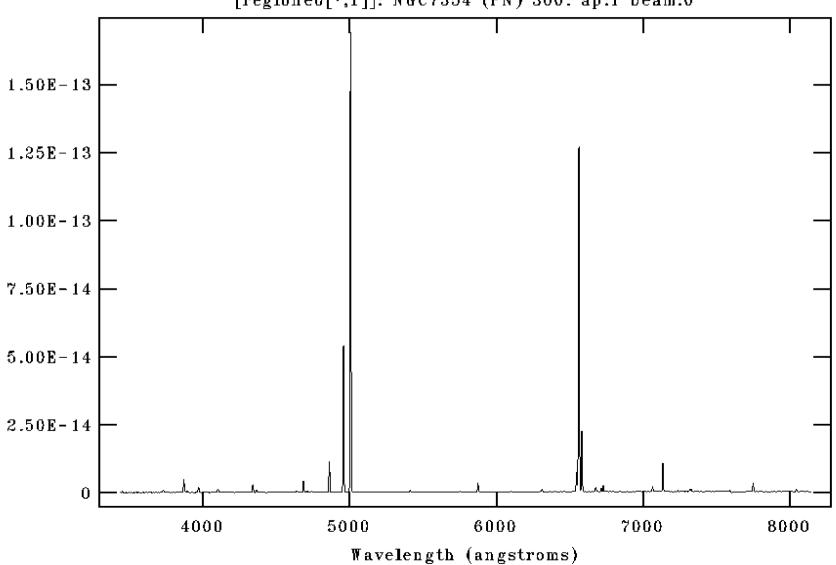


Per ogni regione e per ogni riga spettrale presente sono stati calcolati flusso osservato, ampiezza della gaussiana, e scarto quadratico medio

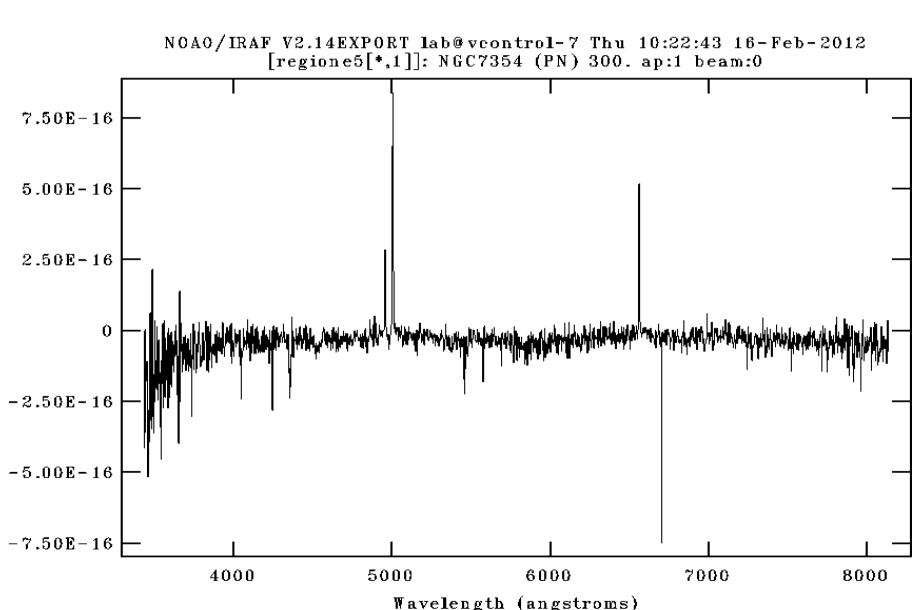


E' stato calcolato il flusso intrinseco per ogni riga




Sono stati determinati i valori di temperatura, densità, e l'abbondanza dell'ossigeno e dell'azoto per ogni regione analizzata

### ELABORAZIONE

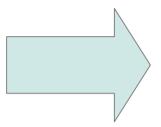

Procedimento seguito passo per passo

### SPETTROSCOPICA

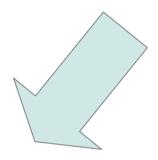
NOAO/IRAF V2.14EXPORT lab@vcontrol-7 Thu 10:21:38 16-Feb-2012 [regione0[\*,1]]: NGC7354 (PN) 300. ap:1 beam:0



### SPETTROSCOPICA



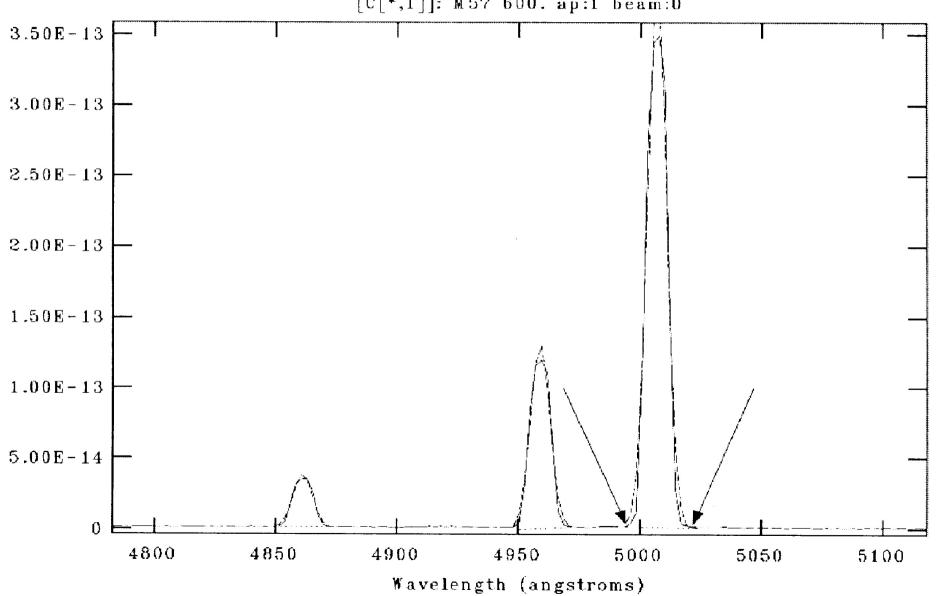

### **OUTPUT IRAF**


**FLUSSO OSSERVATO** 

SCARTO QUADRATICO MEDIO DEL CONTINUO (rms)

AMPIEZZA DELLA GAUSSIANA




CREAZIONE FILE splot.log



CREAZIONE TABELLA IN TOPCAT

#### OUTPUT IRAF

NOAO/IRAF V2.15.1 eraeco@lteraec Tue 08:53:09 22-Feb-2011 [C[\*,1]]: M57 600. ap:1 beam:0



### OUTPUT TOPCAT

Per ogni flusso di ogni riga che è stato misurato è stato calcolato l'errore relativo, errore assoluto ed rapporto segnale-rumore

**ERRORE RELATIVO** 

$$\frac{\Delta F}{F}$$
=rms×core

**ERRORE ASSOLUTO** 

$$\Delta F = Flux \times (\frac{\Delta F}{F})$$

RAPPORTO SEGNALE-RUMORE

$$\frac{S}{N} = \frac{F}{\Delta F}$$

### OUTPUT TOPCAT

Intrinseco

Osservato

$$\left(\frac{FH \alpha}{FH \beta}\right) = \left(\frac{FH \alpha}{FH \beta}\right) \times 10^{0.4 A(\nu)}$$



$$A(\lambda) = A(V) \times \left[ a(y) + \frac{b(y)}{3,1} \right]$$



Intrinseco

Osservato

$$F(\lambda) = F(\lambda) oss \times 10^{-0.1386 \times A(\lambda)}$$

Dalla formula inversa di questa formula è stato calcolato A(v) dell'H

A partire dal coefficiente A(v), estinzione in banda visibile, dell'H si calcola quello riferito ad ogni riga osservata

A partire dal flusso osservato, ovvero quello calcolato con IRAF è stato calcolato quello intrinseco

## TEMPERATURA e DENSITÀ

- Per calcolare la temperatura e densità si calcolano i rapporti rispettivamente di [OIII] e [SII]
- Per ottenere la temperatura e la densità della regione analizzata è stato utilizzato IRAF
- È stata calcolata la distanza di ogni regione dal centro della nebulosa in parsec
- Sono stati creati due grafici uno temperatura in funzione della distanza e uno densità in funzione della distanza

### TEMPERATURA e DENSITÀ

Per la temperatura si usa il rapporto delle righe dell'Ossigeno:

Per la densità si usa il rapporto delle righe dello Zolfo:

$$[0 \ III] = \frac{I(5007) + I(4959)}{I(4363)}$$

$$[S II] = \frac{I(6716)}{I(6731)}$$

# TEMPERATURA e DENSITÀ

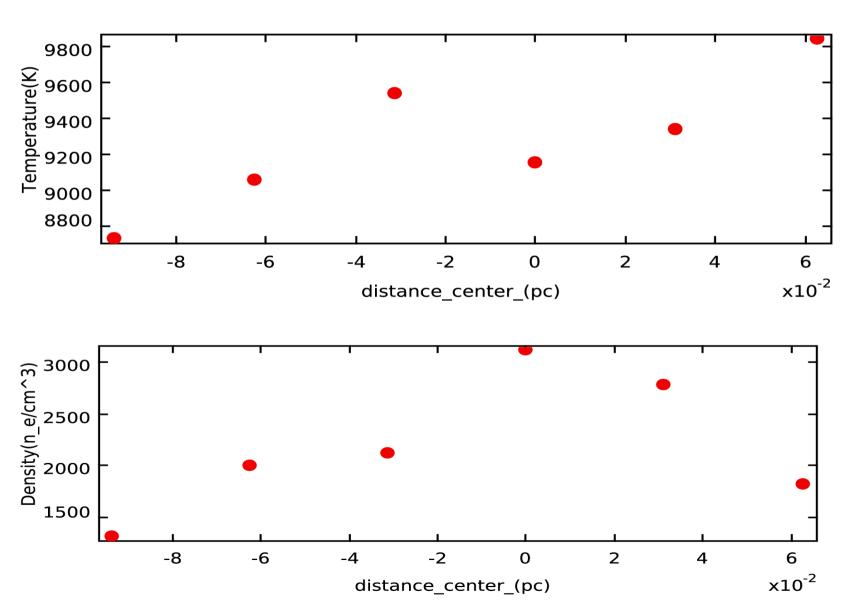
```
IRAF
                          Image Reduction and Analysis Facility
PACKAGE = nebular
   TASK = temden
option =
                 temperature Quantity to calculate: density or temperature
                          10. Expression for flux ratio
flxratio=
                       oxygen) Atom name
(atom =
                            3) Atomic spectrum number (e.g., [S ii] = 2)
(spectru=
                      default) Transition description
(transit=
                         300.) Assumed electron temperature/density
(assume =
          31446.056640625) Result of calculation
(result =
(verbose=
                           no) Print info for each iteration?
                      at_data) Atomic reference data directory
(at_data=
(mode =
                           al)
                                                                        ESC-? for HELP
```

# TEMPERATURA e DENSITÀ

| #Regione | Temperatura (K) | Densità (e <sup>-</sup> /cm³) |
|----------|-----------------|-------------------------------|
| 2        | 9837            | 1807                          |
| 1        | 9331            | 2778                          |
| 0        | 9145            | 3116                          |
| -1       | 9527            | 2117                          |
| -2       | 9049            | 1997                          |
| -3       | 8719            | 1302                          |

### CONVERSIONE DISTANZA

Determinazione delle distanze dal centro; conversione da pixel a secondi d'arco:


$$r(") = r(px) \times scala("/pixel)$$

Successivamente convertite in parsec:

$$r(pc) = \frac{r(") \times d(pc)}{206265}$$

Dove la distanza era 1271 pc.

## TEMPERATURA e DENSITÀ



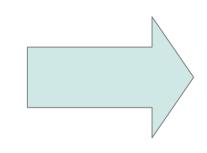
### ABBONDANZE CHIMICHE

$$\frac{O}{H} = \frac{OI + OII + OIII}{HI}$$

$$\frac{N}{H} = \frac{O}{H} \times \frac{N}{O}$$

ABBONDANZE DI OSSIGENO

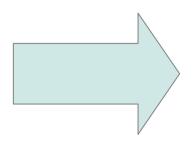



ABBONDANZE DI AZOTO



Allontanandosi dal centro della nebulosa si ha una maggiore presenza sia di ossigeno sia di azoto

### PRESENTI CHIMICI PRESENTI


TUTTE LE REGIONI



[ArIII] [NII] Halfa [OIII] Hbeta

[SII]

REGIONI PIÙ INTERNE



[OII]
HeI
HeII
[ArIV]
H gamma
H delta
[NeIII]
H8

#### SCHEDA RIASSUNTIVA VALORI

| Temperatura<br>(K)                          | 9500 (valor medio)                            |
|---------------------------------------------|-----------------------------------------------|
| Densità<br>(e <sup>-</sup> /cm³)            | Max: 3100<br>Min: 1300                        |
| Abbondanza<br>Ossigeno (×10 <sup>-4</sup> ) | Max: 8,72 (REGIONE -2) Min: 7,90 (REGIONE -1) |
| Abbondanza<br>Azoto (×10 <sup>-4</sup> )    | Max: 5,00 (REGIONE 1) Min: 4,68 (REGIONE -2)  |

## CONFRONTO NEBULOSE PLANETARIE

NGC7354

**NGC7009** 

Temperatura (K)

9500 (valor medio)

10039 (valor medio)

Densità (e-/cm3)

Max: 3100 Min: 1300 Max: 3800 Min: 1300

Abbondanza Ossigeno (×10<sup>-4</sup>)

Max: 8,72 (REGIONE -2) Min: 7,90 (REGIONE -1)

Max: 6,59 Min: 4,88

Abbondanza Azoto (×10<sup>-4</sup>)

Max: 5,00 (REGIONE 1) Min: 4,68 (REGIONE -2)

Max: 3,35 Min: 2,69