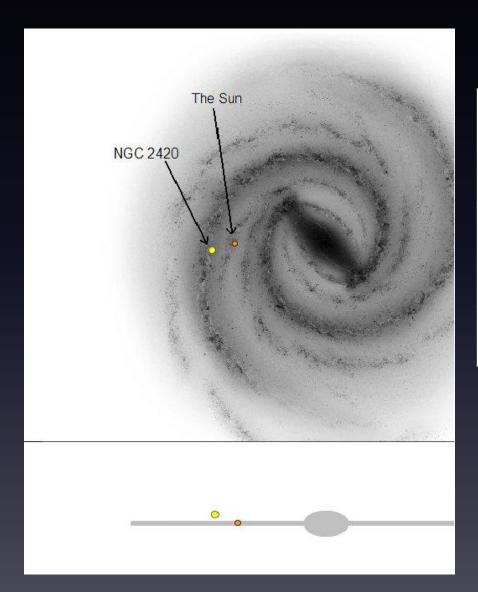
TEMPERATURA DELLE STELLE DELL'AMMASSO APERTO NGC 2420

Elisa Affili, Lorenzo Casarin, Gianluca Maguolo

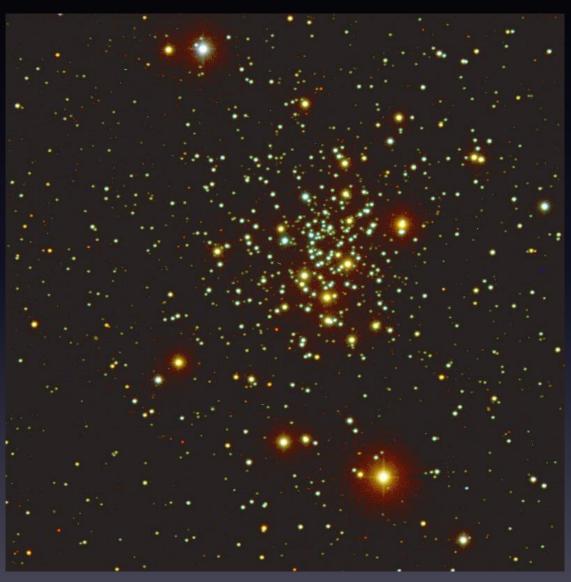
Obiettivi


• Studio degli spettri di 30 stelle e determinazione della relazione tra (*r-i*) e T

Stima di temperatura, raggio e massa di 351 stelle

Gli ammassi aperti

- sono raggruppamenti di stelle che derivano dalla stessa nube molecolare, legate dalla reciproca forza gravitazionale.
- Le stelle presentano simile composizione chimica, età e distanza dalla Terra.
- Sono pertanto più semplici da studiare rispetto alle singole stelle e forniscono informazioni sui modelli di evoluzione stellare.


NGC 2420

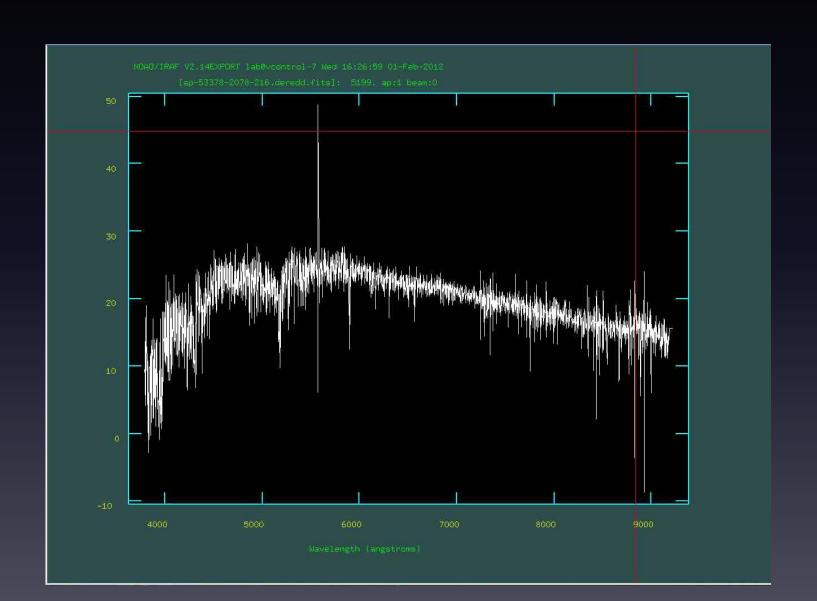
RA	7 ^h 38 ^m 24 ^s				
Dec	21° 42′ 27′′				
Tipo di	l 1 r Gemini				
ammasso					
Costellazione					


Dati relativi al 2000

Foto dell'ammasso

Dati osservativi

- I 30 spettri e le magnitudini nelle bande fotometriche *ugriz* provengono dal catalogo SDSS DR7, contenente i dati di milioni di corpi celesti raccolti con il telescopio da 2.5 m di Apache Point in New Mexico.
- Distanza ed E(B-V) sono stati presi dall'articolo Jacobson, H.R. et al. 2011, ApJ, 142, 59

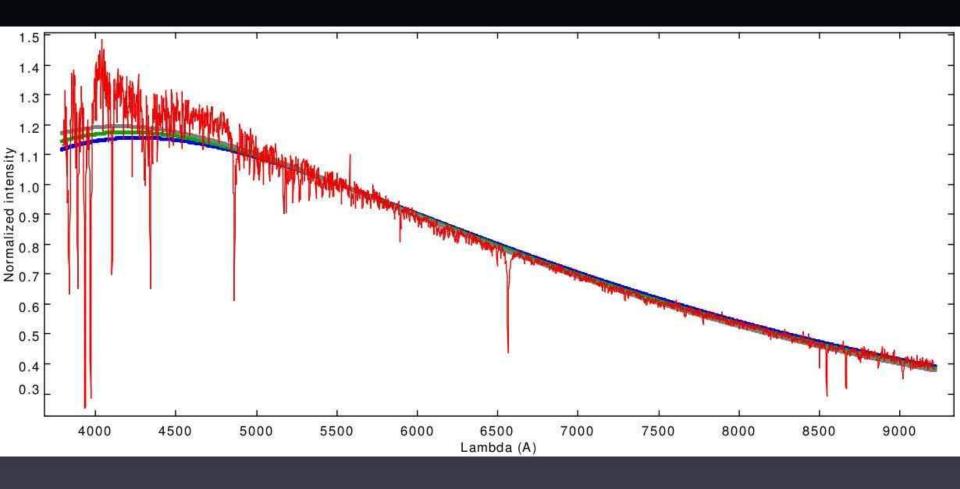

Fasi del lavoro

- Preparazione degli spettri
- Confronto fra i 30 spettri e le curve di Planck
- Verifica della relazione tra (r-i) e T
- Stima della temperatura di tutte le stelle
- Stima di raggio, massa e temperatura del turnoff dell'ammasso

Preparazione spettri

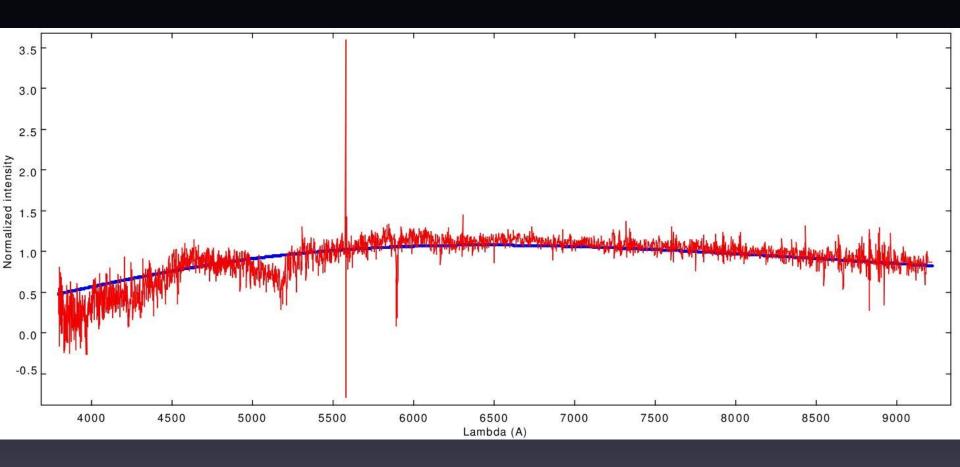
- Correzione dell'arrossamento visuale con il task DEREDDEN di IRAF, con il valore di E(B-V) = 0.05 ricavato prima.
- Normalizzazione degli spettri:
 - Determinazione del valore di intensità media fra 5450 e 5550 Å
 - Divisione dello spettro per il valore medio

Determinazione del valor medio


Fitting delle planckiane

 Dalla formula di Planck discende che, normalizzandola a 5500 Å

$$B(\lambda; T) = \left(\frac{5500}{\lambda}\right)^{5} \frac{e^{\frac{1.439 \times 10^{8}}{5500 \times T}} - 1}{e^{\frac{1.439 \times 10^{8}}{\lambda \times T}} - 1}$$


• Confrontando le curve con gli spettri abbiamo stimato la temperatura delle stelle, con un'incertezza stimabile di σ = 100 K.

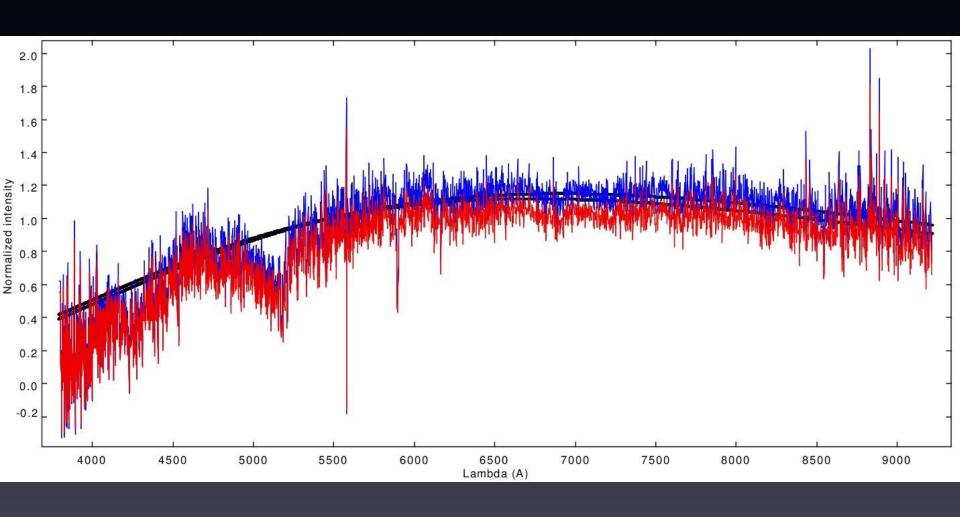
Fitting delle planckiane

Grigio: 7000 K Verde: 6900 K Blu: 6800 K

Fitting delle planckiane

Blu: 4400 K

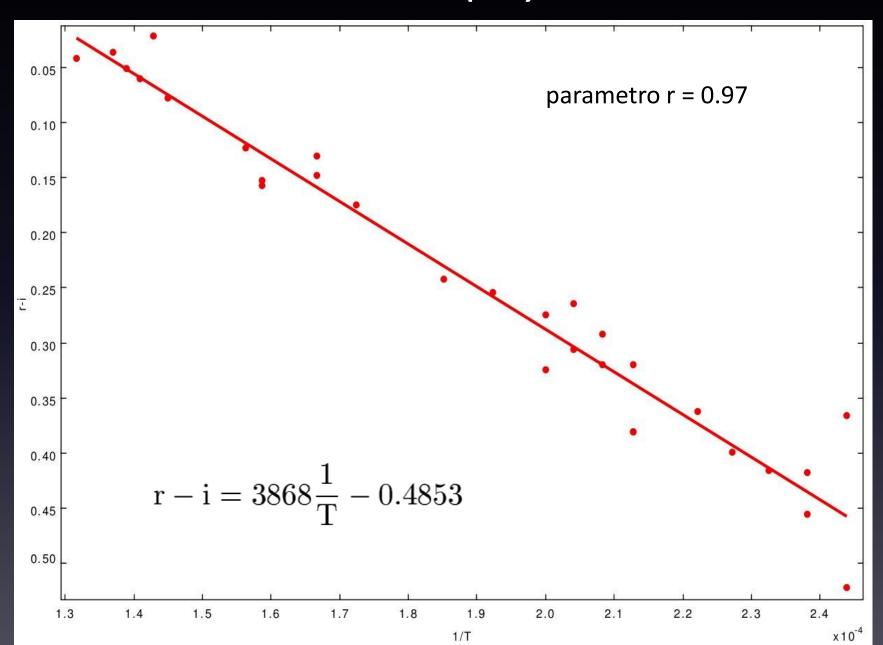
Rosso: spettro normalizzato

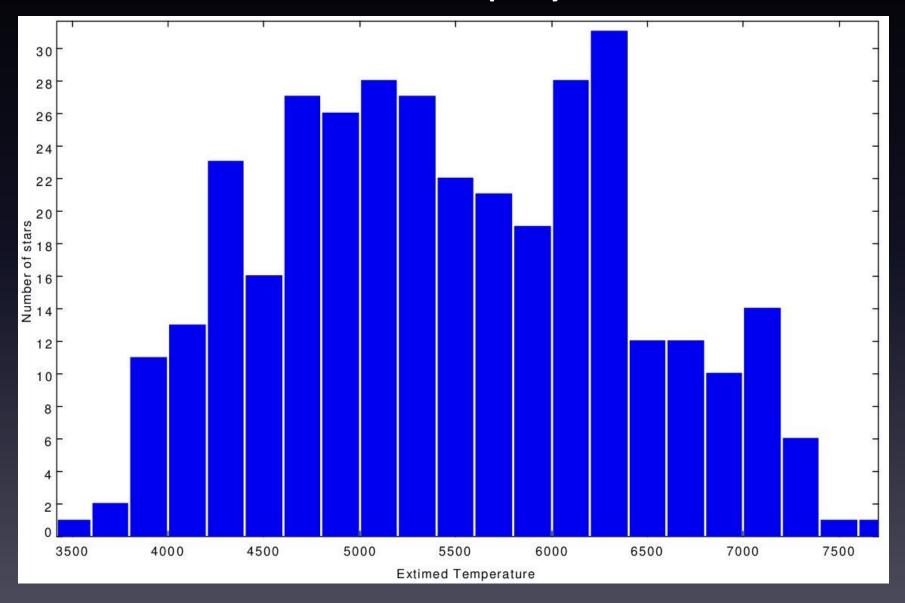

Fitting delle planckiane: risultati

ID	$_{\rm ra}$	dec	g	r	i	${ m T}$	$ m R/R_{\odot}$	${ m M/M_{\odot}}$
1	114.9735	21.4002	15.393	15.112	15.034	6900	1.69	2.30
2	114.6514	21.4856	18.512	17.741	17.466	5000	0.86	0.98
3	114.6541	21.5293	17.238	16.807	16.649	6300	0.91	1.05
4	114.5458	21.4817	14.979	14.725	14.683	7600	1.97	2.77
5	114.4921	21.5289	17.804	17.259	17.083	5800	0.83	0.95
6	114.5007	21.4523	17.246	16.845	16.691	6300	0.86	0.99
7	114.3529	21.2430	18.561	17.831	17.576	5200	0.79	0.88
8	114.4639	21.5439	14.877	14.641	14.605	7300	2.01	2.84
9	114.3934	21.2792	17.576	17.102	16.971	6000	0.83	0.94
10	114.3612	21.5472	16.875	16.512	16.388	6400	0.97	1.14
11	114.2716	21.4530	15.055	14.758	14.736	7000	2.03	2.88
12	114.5008	21.9307	15.186	14.917	14.856	7100	1.83	2.53
13	114.5514	21.8219	15.246	15.039	14.987	7200	1.62	2.17
14	114.7915	21.6364	18.203	17.612	17.464	6000	0.74	0.82
15	114.8338	21.3354	19.656	18.709	18.327	4700	0.67	0.73
16	114.8108	21.4273	19.520	18.661	18.341	4700	0.62	0.66
17	114.8214	21.5455	20.341	19.153	18.629	4100	0.69	0.75
18	114.7947	21.3329	19.119	18.311	17.985	5000	0.69	0.75
19	114.7019	21.2075	19.980	18.903	18.503	4400	0.70	0.77
20	114.6940	21.4959	20.095	18.965	18.546	4200	0.72	0.79
21	114.5022	21.3501	19.291	18.454	18.133	4800	0.67	0.72
22	114.5346	21.4441	18.651	17.974	17.731	5400	0.69	0.75
23	114.3824	21.2302	20.048	19.008	18.645	4500	0.65	0.69
24	114.3306	21.4731	18.998	18.169	17.877	4800	0.75	0.84
25	114.2144	21.6947	20.449	19.282	18.825	4200	0.64	0.68
26	114.3740	21.6822	19.653	18.692	18.311	4700	0.69	0.75
27	114.6812	21.9667	19.712	18.684	18.267	4300	0.74	0.82
28	114.6743	21.9474	20.978	19.783	19.416	4100	0.52	0.52
29	114.7511	21.6117	19.519	18.613	18.306	4900	0.67	0.72
30	114.8330	21.9176	19.179	18.296	18.030	4900	0.76	0.84

Stima dell'errore

- Scelto lo spettro con maggiore errore relativo (σ/I_{5500}), lo abbiamo rinormalizzato col valore I_{5500} + σ
- Nuova stima della temperatura, coerente con la precedente
- Stima dell'errore a 3σ


Stima dell'errore


Relazione (r-i) e T

- Realizzazione del grafico (r-i) (indice di colore che si ricava dai dati SDSS delle 30 stelle campione) vs 1/T (ricavata)
- Verifica della proporzionalità diretta tra i due
- Determinazione della legge di proporzionalità
- Stima della temperatura delle altre 321 stelle con la precedente relazione.

Relazione (r-i) e T

Relazione (r-i) e T

Stima di raggio e massa

 Conversione delle magnitudini da ugriz a UBVRI con le formule

$$B = g + 0.349 \times (g - r) + 0.245$$
$$V = g - 0.569 \times (g - r) + 0.021$$

Calcolo della brillanza superficiale

$$P_{V} = 0.2241 - 0.5610(B - V) +$$

$$+0.6207(B - V)^{2} - 0.6056(B - V)^{3} + 0.2041(B - V)^{4}$$

Stima di raggio e massa

 Stima del raggio angolare, legato alla brillanza superficiale

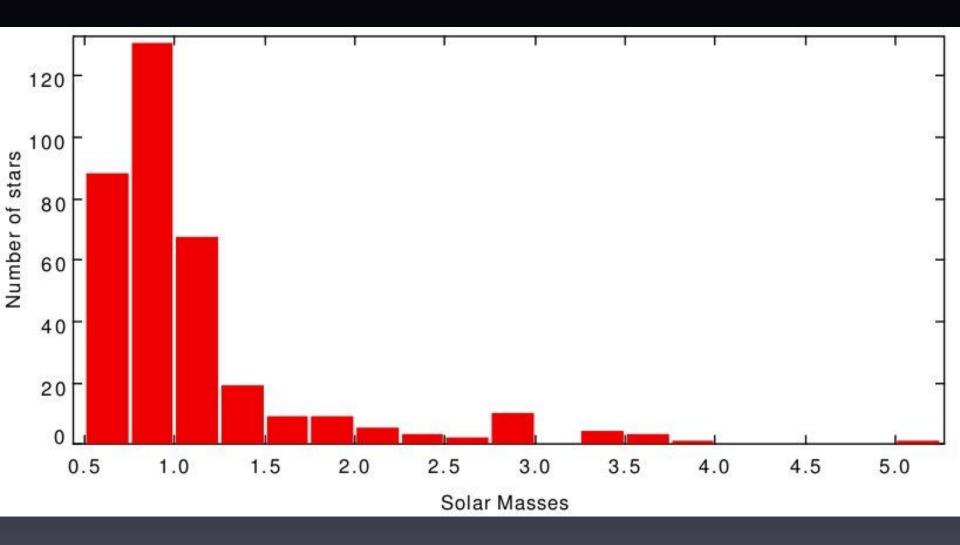
$$\theta_{\rm R} = \theta_{\rm R}^{\odot} 10^{-2[P_{\rm V} + 0.1(m_{\rm V} - m_{\rm V}^{\odot})]}$$

 Linearizzazione della misura angolare sapendo la distanza

$$R = \left(\frac{\theta_R}{206265}\right) d$$

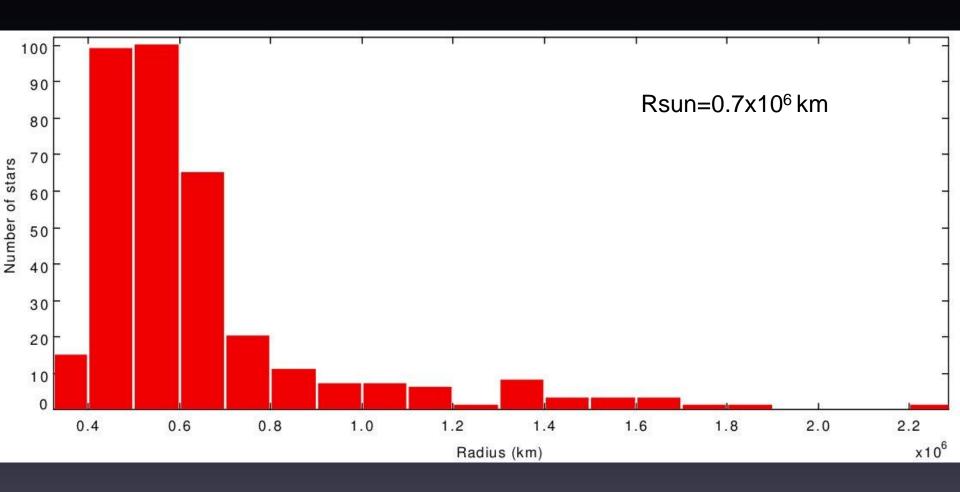
Stima di raggio e massa

Stima della massa, nota la relazione con il raggio


$$\frac{\mathrm{M}}{\mathrm{M}_{\odot}} = \left(\frac{\mathrm{R}}{0.87\mathrm{R}_{\odot}}\right)^{1.25}$$

 La prossima tabella riassume i dati relativi alle 30 stelle iniziali

Fitting delle planckiane: risultati per le 30 stelle campione


$\overline{\mathrm{ID}}$	$_{\rm ra}$	dec	g	r	i	T	$ m R/R_{\odot}$	${ m M/M_{\odot}}$
1	114.9735	21.4002	15.393	15.112	15.034	6900	1.69	2.30
2	114.6514	21.4856	18.512	17.741	17.466	5000	0.86	0.98
3	114.6541	21.5293	17.238	16.807	16.649	6300	0.91	1.05
4	114.5458	21.4817	14.979	14.725	14.683	7600	1.97	2.77
5	114.4921	21.5289	17.804	17.259	17.083	5800	0.83	0.95
6	114.5007	21.4523	17.246	16.845	16.691	6300	0.86	0.99
7	114.3529	21.2430	18.561	17.831	17.576	5200	0.79	0.88
8	114.4639	21.5439	14.877	14.641	14.605	7300	2.01	2.84
9	114.3934	21.2792	17.576	17.102	16.971	6000	0.83	0.94
10	114.3612	21.5472	16.875	16.512	16.388	6400	0.97	1.14
11	114.2716	21.4530	15.055	14.758	14.736	7000	2.03	2.88
12	114.5008	21.9307	15.186	14.917	14.856	7100	1.83	2.53
13	114.5514	21.8219	15.246	15.039	14.987	7200	1.62	2.17
14	114.7915	21.6364	18.203	17.612	17.464	6000	0.74	0.82
15	114.8338	21.3354	19.656	18.709	18.327	4700	0.67	0.73
16	114.8108	21.4273	19.520	18.661	18.341	4700	0.62	0.66
17	114.8214	21.5455	20.341	19.153	18.629	4100	0.69	0.75
18	114.7947	21.3329	19.119	18.311	17.985	5000	0.69	0.75
19	114.7019	21.2075	19.980	18.903	18.503	4400	0.70	0.77
20	114.6940	21.4959	20.095	18.965	18.546	4200	0.72	0.79
21	114.5022	21.3501	19.291	18.454	18.133	4800	0.67	0.72
22	114.5346	21.4441	18.651	17.974	17.731	5400	0.69	0.75
23	114.3824	21.2302	20.048	19.008	18.645	4500	0.65	0.69
24	114.3306	21.4731	18.998	18.169	17.877	4800	0.75	0.84
25	114.2144	21.6947	20.449	19.282	18.825	4200	0.64	0.68
26	114.3740	21.6822	19.653	18.692	18.311	4700	0.69	0.75
27	114.6812	21.9667	19.712	18.684	18.267	4300	0.74	0.82
28	114.6743	21.9474	20.978	19.783	19.416	4100	0.52	0.52
29	114.7511	21.6117	19.519	18.613	18.306	4900	0.67	0.72
30	114.8330	21.9176	19.179	18.296	18.030	4900	0.76	0.84

Risultati: massa delle 351 stelle

Il 97.4% delle stelle ha una massa inferiore a 3 Msun.

Risultati: raggi delle 351 stelle

Il 96% delle stelle ha raggio inferiore a 2 Rsun.

Risultati

- I dati sono coerenti tra di loro e confermano le relazioni tra le grandezze tipiche della sequenza principale delle stelle di un ammasso.
- Il 95.7% % delle stelle studiate ha una temperatura inferiore a 7100 K
- Il 96% delle stelle ha un raggio inferiore a 2 Rsun.
- Il 97.4% delle stelle ha una massa inferiore a 3 Msun.
- Stimiamo il turn-off dell'ammasso in corrispondenza a stelle di temperatura di circa 7100 K, quindi il turnoff è in corrispondenza a stelle di classe F2-F3 la cui vita in MS è dell'ordine dei 2-3 Gyr.