

# Determination of the spectral type of 60 stars from the catalog SDSS

Davide Longi<sup>1</sup>, Alex Gnech<sup>1</sup>, Petra Deola<sup>1</sup>

<sup>1</sup>Liceo G. Galilei, sez. Scientifico, Belluno

**Abstract.** Our task consisted in selecting a certain amount of stars from a catalog in order to identify which spectral type they belong to. Our work was divided into two main phases: at first, we created a graph with the spectrum for each star and then compared them with the spectra taken from a list of stars of known spectral type to find the one that best matches our stars. After this, we were able to assign a spectral type to all the stars we examined.

## 1. Introduction

Stars are characterized by many physical and chemical parameters such as temperature, colour, luminosity and chemical composition.

A stellar spectrum shows the energy flow emitted by a star at different wavelengths. Thanks to the work of some physicists like Planck and Wien, today we are aware that the shape of the spectral curve is related to the temperature of the star, while the negative peaks, that represent the absorption lines, are due to the elements in its atmosphere. Thanks to this, analysing the spectrum of a star, its temperature and the chemical composition of its atmosphere can be inferred.

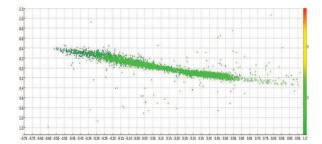
Regarding the classification of the stars according to their spectral characteristics, it is generally used in astronomy the Harvard classification, which divides the stars into seven main classes, from the hottest ones to the coldest ones:

- O: blue stars with a temperature between 50000K and 25000K;
- B: blue stars with a temperature between 25000K and 12000K:
- A: white stars with a temperature between 12000K and 7500K:
- F: white stars with a temperature between 7500K and 6000K:
- G: yellow stars with a temperature between 6000K and 5000K (like the Sun);
- K: red stars with a temperature between 5000K and
- M: red stars with a temperature of about 3000K.

Moreover each class is divided into other ten groups, from 0 to 9, with decreasing temperature.

#### 2. Observational Data

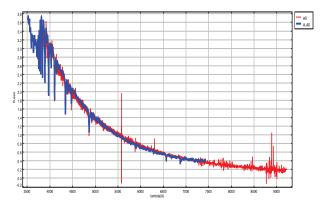
The stars we chose for our project were selected from the Sloan Digital Sky Survey (SDSS) archive, which contains photometric observations and spectra of objects in more than 35% of the sky. This survey is based on observations made with the 2.5-m wide-angle optical telescope and 0.5-m Photometric Telescope at the Apache Point Observatory in New Mexico.


We started selecting 5000 stars, among the point-like sources, having different right ascension (RA) and declination (DEC), and high quality in the SDSS archive.

## 3. Work description

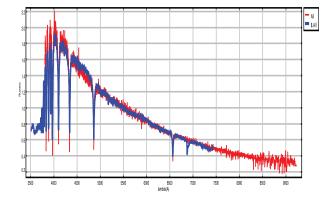
The first phase of our work consisted in selecting the stars to be processed. Our purpose was to get as many spectral types as possible, therefore we searched for stars with different characteristics. In order to do this, we created a two colours plot by using the TOPCAT software (an interactive graphical viewer and editor for tabular data).

We tried to combine different colour indexes in order to have the best linear distribution. At the end we obtained the relation in Fig. 1, which shows the distribution of the stars with different colours and therefore different temperatures.

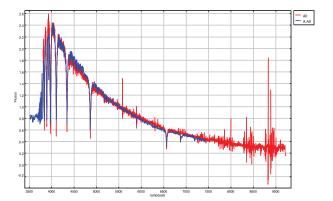

Then we proceeded choosing 60 objects in the graph, trying to cover up the best distribution of stars on the diagram. After this, we downloaded the spectra for the selected objects from the SDSS catalogue. We elaborated the spectra using the package IRAF (Image Reduction and Analysis Facility). We obtained all the information connected with each star's spectrum we analysed. This was necessary to find the average value



**Fig. 1.** Graph obtained selecting 5000 stars from the SDSS catalogue. On the x-axis there is the colour index g - r, on the y-axis the colour index i - r, and on the third axis (the color bar) the colour index u - g.


of the spectra at a certain wavelength (5500 Å), that was used to normalize the spectra and therefore make them comparable with the spectra of the library. This was done using IRAF again and dividing the spectra by the above mentioned value.

After that, using TOPCAT, we compared our spectra with those of known spectral type taken from the Jacoby catalogue, trying to overlap the graph as best as we could. This allowed us to identify the spectral type that best fitted the stars we had selected and to create a list of all the 60 stars, with the corresponding spectral type. The list of all the 60 stars with the corresponding spectral type is given in Table 1. In Figs. 2-7 are shown some of the comparisons we made.




**Fig. 2.** This is a star (red line) that was classified as B1.5 after the comparison with the corresponding spectrum taken from the Jacoby catalogue (blue line).

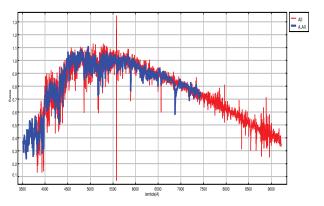
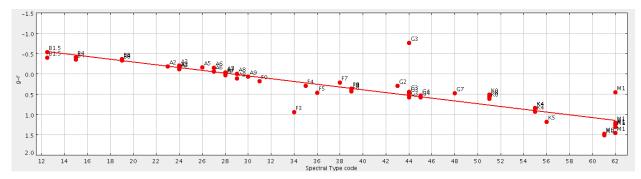
In the last phase of our work we assigned a progressive number to every spectral type, from O0 = 1 to M9 = 70. In Fig. 8 we plotted the number of the spectral type versus the colour index (g - r), for all the stars we had examinated. This plot allowed us to link the colour with the spectral type of the stars.

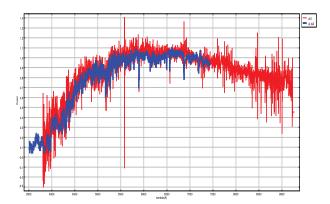


**Fig. 3.** The same as Fig. 2 for a star classified as A7.

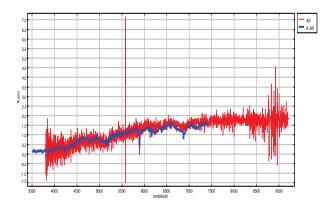


**Fig. 4.** The same as Fig. 2 for a star classified as A2.



Fig. 5. The same as Fig. 2 for a star classified as K0.

# 4. Results


We identified 59 spectral types out of 60 (see Table 1) with good approximation for stars of B, A, F, and G type. On the other hand, we found more difficulties to identify K and M type stars, and this is probably due to the fact that these stars are cooler and therefore their spectra have lower quality. We can notice that most of the stars (15 out of 59) belong to the spectral class A, 11 to the class M, 10 to the class K, 8 to the class G and 8 to the class F. We did not find any star belonging to the spectral type O and we found only 7 stars



**Fig. 8.** The final diagram shows the linear relation (dashed line) between the colour (g - r), on y-axis, and the spectral type code of the stars, on the x-axis. The spectral classification is also reported in the plot.



**Fig. 6.** The same as Fig. 2 for a star classified as K5.



**Fig. 7.** The same as Fig. 2 for a star classified as M0.

of class B, probably because these kinds of stars are very hot and thus quite uncommon. Regarding the star whose spectral type was not determined, we might consider the hypothesis of some error in the data processing. In fact, its spectrum appears almost flat, therefore we can suppose that this is the combination of two different spectra. As for the last graph (Fig. 8), we found a relation between the colour and the spectral type. In fact, by tracing the linear regression using the ordinary least squares method, we obtained a linear relation. We can also notice that for "cool" spectral types the values

are slightly positive and the colour of the stars verges to red, as stated by the Harvard classification, while for "hot" spectral types the values are slightly negative and the colour of the stars verges to yellow.

#### References

[1] A library of stellar spectra, G.H. Jacoby, D.A. Hunter and C.A. Christian, 1984, ApJS, 56, 257 [2] UBV Photoelectric Photometry of Open Cluster M35, H. Sung and S.-W. Lee, 1992, JKAS, 25, 91

 Table 1. Summary results

| No       | Object name<br>SDSS Catalog                | RA      | DEC    | Spectral<br>Type | Mag<br>g | Mag<br>r | color $(g-r)$ |
|----------|--------------------------------------------|---------|--------|------------------|----------|----------|---------------|
| 1        | J151817.20+573142.5                        | 229.572 | 57.528 | B8               | 19.13    | 19.49    | -0.355        |
| 2        | J085713.70+215705.5                        | 134.307 | 21.952 | A2               | 17.42    | 17.60    | -0.182        |
| 3        | J123224.37+411237.4                        | 188.102 | 41.210 | A3               | 20.13    | 20.32    | -0.197        |
| 4        | J111711.31+293419.2                        | 169.297 | 29.572 | G3               | 17.72    | 17.13    | 0.589         |
| 5        | J142343.56+024801.0                        | 215.932 | 2.800  | M1               | 17.60    | 16.31    | 1.284         |
| 6        | J021500.27+135748.1                        | 33.751  | 13.963 | K4               | 18.85    | 18.00    | 0.858         |
| 7        | J173853.68+545255.2                        | 264.724 | 54.882 | M1               | 18.23    | 17.78    | 0.455         |
| 8        | J205835.61-051558.4                        | 314.648 | -5.266 | A8               | 17.61    | 17.78    | 0.433         |
| 9        | J171246.87+300608.6                        | 258.195 | 30.102 | F4               | 25.10    | 24.80    | 0.011         |
| 10       | J083528.55+540347.6                        | 128.869 | 54.063 | Г4<br>К4         | 17.71    | 16.86    | 0.290         |
| 11       | J075305.22+460538.4                        | 118.272 | 46.094 | F8               | 16.39    | 15.95    | 0.833         |
| 12       |                                            |         |        |                  |          |          |               |
|          | J130514.46+030221.7                        | 196.310 | 3.039  | G4               | 17.53    | 22.75    | -5.216        |
| 13       | J105711.59+321313.3                        | 164.298 | 32.220 | B4               | 19.24    | 19.59    | -0.348        |
| 14       | J150212.12-024557.7                        | 225.551 | -2.766 | A7               | 14.87    | 14.86    | 0.007         |
| 15       | J163809.33+345046.6                        | 249.539 | 34.846 | F0               | 18.44    | 18.25    | 0.191         |
| 16       | J215840.78+003334.6                        | 329.670 | 0.560  | M1               | 19.82    | 18.61    | 1.211         |
| 17       | J134723.64+013541.6                        | 206.848 | 1.595  | M1               | 17.44    | 16.17    | 1.265         |
| 18       | J160104.31+551305.1                        | 240.268 | 55.218 | F3               | 18.58    | 17.63    | 0.948         |
| 19       | J084118.27+274627.1                        | 130.326 | 27.774 | A6               | 15.53    | 15.58    | -0.048        |
| 20       | J085422.39+013650.9                        | 133.593 | 1.614  | A5               | 15.98    | 16.13    | -0.149        |
| 21       | J073925.43+341845.2                        | 114.856 | 34.313 | M1               | 18.34    | 16.88    | 1.457         |
| 22       | J160810.63+103211.6                        | 242.044 | 10.537 | B8               | 17.09    | 17.45    | -0.356        |
| 23       | J215227.25+115726.6                        | 328.114 | 11.957 | B1.5             | 17.44    | 17.83    | -0.396        |
| 24       | J082428.16+175213.3                        | 126.117 | 17.870 | A7               | 18.94    | 18.97    | -0.028        |
| 25       | J090123.05+075037.2                        | 135.346 | 7.844  | K0               | 17.83    | 17.32    | 0.519         |
| 26       | J141028.63+024424.3                        | 212.619 | 2.740  | M1               | 17.10    | 15.80    | 1.299         |
| 27       | J113836.32+475510.0                        | 174.651 | 47.919 | B1.5             | 17.52    | 18.05    | -0.524        |
| 28       | J002649.20-091145.6                        | 6.705   | -9.196 | K5               | 25.09    | 19.76    | 5.330         |
| 29       | J153920.68+022057.6                        | 234.836 | 2.349  | M1               | 16.48    | 18.39    | -1.910        |
| 30       | J223404.42-081218.8                        | 338.518 | -8.205 | K0               | 17.66    | 17.09    | 0.566         |
| 31       | J145929.25+003320.3                        | 224.872 | 0.556  | B4               | 18.97    | 19.37    | -0.398        |
| 32       | J084818.90+185314.1                        | 132.079 | 18.887 | A3               | 15.89    | 15.99    | -0.107        |
| 33       | J170028.23+635037.2                        | 255.118 | 63.844 | K5               | 20.57    | 19.39    | 1.183         |
| 34       | J150348.50+005403.7                        | 225.952 | 0.901  | F5               | 17.66    | 17.19    | 0.468         |
| 35       | J013347.55-090812.1                        | 23.448  | -9.137 | A9               | 17.52    | 17.45    | 0.069         |
| 36       | J095253.47+550957.4                        | 148.223 | 55.166 | F8               | 17.89    | 17.53    | 0.364         |
| 37       | J131721.60+610700.7                        | 199.340 | 61.117 | K4               | 19.20    | 18.35    | 0.846         |
| 38       | J171837.36+534623.9                        | 259.656 | 53.773 | A8               | 19.71    | 19.59    | 0.124         |
| 39       | J173147.94+581619.0                        | 262.950 | 58.272 | A3               | 19.59    | 19.72    | -0.134        |
| 40       | J162010.12+191258.1                        | 245.042 | 19.216 | A6               | 17.97    | 18.11    | -0.137        |
| 41       | J123657.67+262449.9                        | 189.240 | 26.414 | A6               | 17.72    | 17.86    | -0.143        |
| 42       | J100707.23+232301.4                        | 151.780 | 23.384 | A7               | 17.56    | 17.59    | -0.033        |
| 43       | J144040.54+000806.2                        | 220.169 | 0.135  | F7               | 15.28    | 15.06    | 0.224         |
| 44       | J223439.76+143614.6                        | 338.666 | 14.604 | G4               | 18.03    | 17.49    | 0.539         |
| 45       | J224734.23-011007.0                        | 341.893 | -1.169 | G4               | 18.17    | 17.58    | 0.583         |
| 46       | J152355.90+022826.6                        | 230.982 | 2.474  | G3               | 17.11    | 17.87    | -0.759        |
| 47       | J161210.54+114535.7                        | 243.044 | 11.760 | В8               | 18.08    | 18.40    | -0.321        |
| 48       | J093404.58+304739.6                        | 143.519 | 30.794 | G2               | 15.68    | 15.38    | 0.303         |
| 49       | J235157.31+135731.9                        | 357.989 | 13.959 | G3               | 18.27    | 17.81    | 0.454         |
| 50       | J145800.15-004509.3                        | 224.501 | -0.753 | A7               | 19.34    | 19.30    | 0.044         |
| 51       | J154949.75+460012.9                        | 237.457 | 46.004 | F8               | 17.67    | 17.28    | 0.395         |
| 52       | J161334.19+114944.2                        | 243.392 | 11.829 | G3               | 17.64    | 17.15    | 0.493         |
| 53       | J093911.44+175540.9                        | 144.798 | 17.928 | M1               | 19.23    | 17.92    | 1.307         |
| 54       | J134723.64+013541.6                        | 206.849 | 1.595  | M1               | 17.44    | 16.17    | 1.265         |
| 55       | J163135.42+162509.0                        | 247.898 | 16.419 | K4               | 17.74    | 16.80    | 0.941         |
| 56       | J032334.20-073404.7                        | 50.893  | -7.568 | M0               | 21.24    | 19.76    | 1.482         |
| 57       | J221213.32+132928.1                        | 333.056 | 13.491 | K0               | 25.11    | 18.64    | 6.473         |
|          |                                            | 209.167 | 1.789  | M0               | 20.78    | 19.26    | 1.522         |
| 58       | J133040.10±014/19.9                        | 207.107 |        |                  |          |          |               |
| 58<br>59 | J135640.16+014719.9<br>J082255.27+440317.6 | 125.730 | 44.055 | G7               | 18.05    | 17.56    | 0.487         |