ugriz photometry of candidate galaxy groups: 2MASXJ14391186+1415215 and 2MASXJ14530794+2554327

Giulia Boscolo "Papo" (1), Riccardo Ravagnan (2), Gloria Tiozzo "Lia" (2)

(2) Liceo "G. Veronese" sez. Classica, Chioggia Liceo "G. Veronese" sez. Scientifico Brocca, Chioggia

ABSTRACT

We studied the photometry of the two galaxy groups 2MASXJ14391186+1415215 and 2MASX J14530794+25554327 using 5 bands (u, g, r, i, z). This study allowed us to determine when a group is compact and isolated, using Hickson's criteria. Hickson established three criteria to define groups of galaxies. The first is the population: the group must be composed of at least four members. The second is the compactness: the galaxies have to be included in a limited field. The third is the isolation: the members of a galaxy group have to be distant from other galaxies.

I. INTRODUCTION

Groups of galaxies are the smallest aggregates of galaxies. They contain typically less than 50 galaxies in a diameter of 1 to 2 Mpc. For example the group that contains our galaxy, the *Milky Way*, is called the *Local Group* and contains more than 40 galaxies.

For this analysis we chose the galaxies with the same characteristics: size, brightness and relative distance.

Image 1: Group of galaxies 2MASX J14391186+1415215.

II. OBSERVATIONAL DATA

We used images extracted from the public archive of the Sloan Digital Sky Survey (SDSS). SDSS is a project that provides optical images covering more than a quarter of the sky and a three-dimensional map containing about one million galaxies and 120000 quasars. SDSS used a 2.5 m telescope, at Apache Point in New Mexico. For the photometric survey, five filters were used; every filter can select only a determined range of the electromagnetic spectrum of visible light. The five filters (u, g, r, i, z) and their average wavelengths are:

и	g	r	i	z
3551 Å	4686 Å	6165 Å	7481 Å	8931 Å

Our study was focused on the analysis of the photometric properties of galaxies around two X-ray sources: 2MASX J14391186+1415215 and 2MASX J14530794+2554327, in order to understand if they can be candidate galaxy groups. Since we do not have spectra for these galaxies, we cannot determine their redshift and therefore we are forced to use photometry.

2MASX J14391186+1415215				
Right Ascension	14h39m11.8s			
Declination	+14d15m22s			
Constellation	Bootes			

2MASXJ14530794+2554327				
Right Ascension 14h53m07.9s				
Declination	+25d54m33s			
Constellation	Bootes			

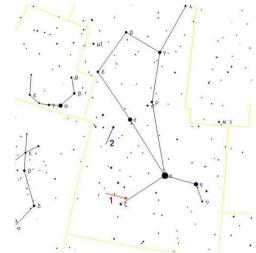


Image 2: Bootes constellation.

III. WORK DESCRIPTION

We used the program IRAF (Image Reduction and Analysis Facility) to analyze the images: each pixel in the image has a value in counts that is proportional to the flux of photons collected by the telescope. By using this program we can measure the light of the galaxies. We took five images. Every image was taken by the telescope using different filters (u, g, r, i, z).

To understand if a group of galaxies is isolated or not, we performed the following operations.

We started by displaying the images, then we selected the galaxies that appeared to belong to the same group for size, brightness and their reciprocal proximity. We numbered them and put a circle around each of them to easily identify them.

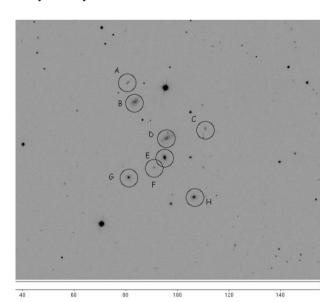


Image 3: The group 2MASX J14391186+1415215.

We searched for the centers of the galaxies and found their coordinates. We enclosed each galaxy in a circle with the smallest possible radius in which we calculated the photometry (the centre of the circle corresponds to that of the galaxy). Then we traced a larger concentric circle around the previous one, including each galaxy, in which we estimated the sky brightness to be subtracted.

With *IRAF* we calculated the magnitude of each galaxy, called "instrumental magnitude" (m_s) . We converted instrumental into calibrated magnitudes using the photometric constants provided by SDSS (m_0, k, X) and applying the following formula: $m = m_0 + m_s - k \cdot X$, where m_s is the instrumental magnitude, m_0 the photometric zero-point, k the atmospheric extinction coefficient and X the airmass.

For the second group of galaxies, we got 2 sets of constants, because the galaxies were distributed in two different frames:

Filter	и	g	r	i	\boldsymbol{z}
m_0	23.78	24.44	24.04	23.69	21.09
k	0.554	0.213	0.136	0.069	0.062
X	1.116	1.119	1.112	1.114	1.117

Tab. 3: Group of galaxies 2MASX J14391186+1415215.

Filter	и	g	r	i	z
m_0	23.79	24.40	24.01	23.61	21.97
k	0.586	0.206	0.125	0.067	0.052
X	1.035	1.038	1.033	1.034	1.036

Tab 4: Group of galaxies 2MASXJ14530794+2554327; Frame 1.

Filter	и	g	r	i	z
m_0	23.754	24.36	23.96	23.57	21.90
k	0.603	0.209	0.128	0.087	0.077
X	1.012	1.013	1.011	1.012	1.013

Tab 5: Group of galaxies 2MASXJ14530794+2554327; Frame 2.

To analyse the properties of the candidate groups we used only the r filter.

In order to determine the compactness, we needed to calculate the surface brightness of all the galaxies together. First, we converted the calibrated magnitude of each galaxy into intensity:

$$m = -2.5 \log I \rightarrow I = 10^{-m/2.5}$$

Galaxy	r	I_r
а	13.591	$0.3661 \cdot 10^{-5}$
b	12.136	$1.398 \cdot 10^{-5}$
c	13.758	0.3139 · 10-5
d	11.572	$2.350 \cdot 10^{-5}$
e	11.338	2.916 ·10 ⁻⁵
f	14.061	$0.2374 \cdot 10^{-5}$
g	12.063	1.495 ·10 ⁻⁵
h	11.665	$2.157 \cdot 10^{-5}$

Tab. 6: Group 2MASX J14391186+1415215.

Galaxy	r	I_r
\boldsymbol{A}	14.871	$0.1125 \cdot 10^{-5}$
В	12.253	$1.254 \cdot 10^{-5}$
С	12.772	$0.777 \cdot 10^{-5}$
D	11.760	1.975 ·10 ⁻⁵
E	13.908	$0.273 \cdot 10^{-5}$

Tab. 7: Group 2MASXJ14530794+2554327.

Then we measured the radius of the smallest possible circle containing the group of galaxies. This radius was originally in pixels, but we converted it into *arcsecs* knowing that each pixel of the image is a square covering an area of the sky corresponding to 0.4x0.4 arcsec.

For the first group we obtained 315 px = 126", and for the second group 153 px = 61".

We calculated the surface intensity of each group summing the intensities of each galaxy and dividing by the area of the circle:

$$I = \frac{\sum I_g}{\pi R^2}$$

where R represents the radius of the circle that contains the group of galaxies.

The sum of the intensities of the first group is 11.2334·10⁻⁵. The surface intensity of the first group is:

$$I = \frac{11.2334 \cdot 10^{-5}}{\pi \cdot 15876} = 2.25 \cdot 10^{-9}$$

The sum of the intensities of the second group is $4.3915 \cdot 10^{-5}$. The surface intensity of the second group is:

$$I = \frac{4.3915 \cdot 10^{-5}}{\pi \cdot 3721} = 3.76 \cdot 10^{-9}$$

Then we were able to calculate the surface brightness of each group of galaxies:

$$\mu_1 = -2.5 \cdot log_{10} (2.25 \cdot 10^{-9}) = 21.62 \text{ mag/arcsec}^2$$

The magnitude of the second group is:

$$\mu_2 = -2.5 \cdot log_{10} (3.76 \cdot 10^{-9}) = 21.06 \text{ mag/arcsec}^2$$

Since these two values are lower than 26 mag/arcsec², the Hickson's limit, we can assert that both galaxy groups are compact.

Finally, we had to define if the groups are isolated or not. To do this we drew a concentric circle to the smallest radius containing the galaxies, but with the radius three times larger. If we find other galaxies within this new circle having magnitudes similar or even brighter than those of the studied groups, they cannot be considered isolated.

In both cases our galaxy groups satisfy the isolation criterion proposed by Hickson.

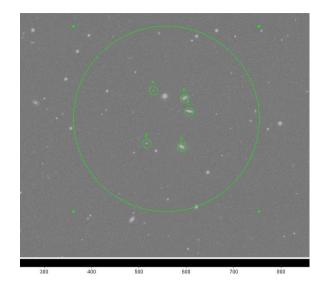


Image 4: The image represents the second group of galaxies and the circle with the radius three times larger than the circle that contains the group.

IV. RESULTS

According to the experimental data, we can say that we have identified candidate compact groups of galaxies. They satisfy the three criteria proposed by Paul Hickson in 1982. It is clear that only from their spectra and redshifts we can be sure that these groups of galaxies are physically connected.