Determinazione della massa di SMBH in 48 QSOs a basso redshift

Serena Busatto, Irene Cavasin, Emilio Grigoletto

Liceo Scientifico "G. Berto", Mogliano Veneto

ABSTRACT

We used QSO emission-line widths to examine the relationships between the continuum luminosity and the luminosity of broad $H\beta$ and narrow [O III] emission lines. Our main aim was to find the mass of the SMBH. Analizing the distribution of the masses we found out that the mass of the SMBH gradually grows with the redshift, but this increase is not easy to perceive because redshifts of our QSOs extend for a very short range (from 0.2 to 0.5).

I. INTRODUZIONE

Nel corso degli ultimi 20 anni è avvenuta una progressiva unificazione della casistica di fenomeni estremamente energetici, coinvolgenti l'intero spettro elettromagnetico, osservati fin dagli anni '40 dapprima nei nuclei di alcune galassie vicine, nelle radiogalassie e quindi nei quasars ed in altri oggetti peculiari, che ha portato alla formulazione di un modello unificato^[1] per tutti gli AGN (active galactic nuclei), termine con cui si indica uno qualsivoglia degli oggetti citati. Il modello prevede che il motore energetico sia costituito da un SMBH (supermassive black-hole) non quiescente, vale a dire dotato di un disco di accrescimento. L'esigenza di tale presenza in ogni AGN deriva dall'impossibilità di spiegare l'energia emessa da tali oggetti, dell'ordine di $10^{41} \div 10^{47}$ erg s⁻¹, mediante altri meccanismi possibili di produzione energetica quali l'esplosione di supernovae. I dati osservativi diretti ed indiretti attualmente disponibili indicano infatti che l'estensione spaziale della zona di produzione dell'energia è inferiore ad un anno-luce arrivando a qualche giorno-luce o meno.

Il nostro lavoro esamina gli spettri di 48 QSO. Un QSO è, (Fig. 1), un AGN visto con una inclinazione, rispetto al piano principale del toro di polveri, che permette di osservare contemporaneamente la NLR (*Narrow Line Region*) e la BLR (*Broad Line Region*).

L'osservazione di tali regioni si manifesta in uno spettro, nella finestra 4000-9000 Å e per redshift inferiori a 0.8, che presenta linee di emissione estremamente intense di due tipi: il primo, tipicamente dell'idrogeno HI, estremamente allargato e di tipo permesso, l'altro, di tipo proibito, di metalli, in particolare di [N II] e [O III]. Tali caratteristiche permettono di valutare, attraverso l'interpretazione dell'allargamento delle righe larghe come allargamento

Doppler dovuto al rapido movimento di nubi di gas in prossimità del disco di accrescimento, la massa viriale del SMBH posto al centro dell'AGN.

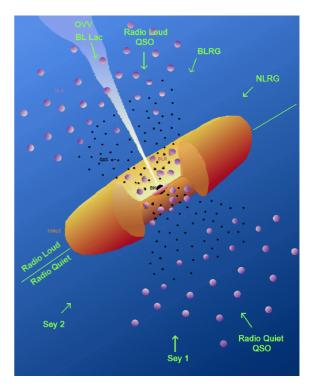


Fig. 1: Schema che mostra i vari tipi di AGN al variare dell'inclinazione della linea di vista dell'osservatore

Questo calcolo richiede che le nubi di gas costituenti la BLR siano gravitanti con moti kepleriani attorno al SMBH e richiede la conoscenza del raggio di tale influenza gravitazionale. Il raggio gravitazionale della BLR è correlato alla luminosità del continuo da alcune relazioni derivanti da studi di reverberation mapping^[2] e fotoionizzazione^[3]. Per una revisione ed una ricalibrazione selettiva delle relazioni tra raggio della BLR e luminosità si veda ^[4].

II. DATI OSSERVATIVI

Gli spettri studiati sono estratti dal catalogo SDSS DR6 (www.sdss.org/dr6). Si tratta di 48 QSO selezionati in base alla loro luminosità.

In Fig. 2 è riportata l'immagine del QSO catalogato come 53112-1773-405 ed in Fig. 3 lo spettro del

medesimo oggetto nel quale sono evidenti le righe di emissione Mg II, H γ , H β e [O III].

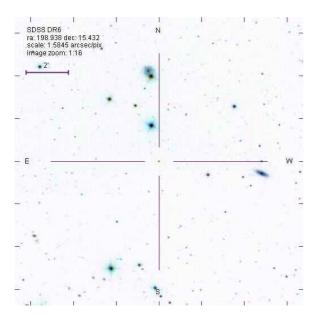


Fig. 2: Immagine SDSS del QSO 53112-1773-405

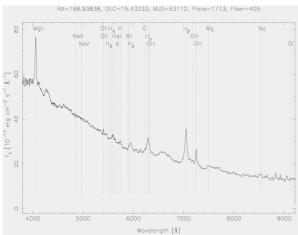


Fig. 3: Spettro del QSO di Fig. 2

Gli spettri in formato FITS estratti dal catalogo sono i seguenti:

1	52885-1415-319	25	53442-1997-059
2	52814-1345-498	26	53446-2037-015
3	53051-1738-419	27	53462-1673-108
4	52992-1594-605	28	53472-2005-040
5	52999-1307-494	29	53491-2147-426
6	53052-1736-620	30	53494-1829-464
7	53055-1443-306	31	53501-1842-067
8	53063-1366-252	32	53533-1811-122
9	53082-1465-030	33	53534-1653-515
10	53083-1367-419	34	53566-2202-592
11	53084-1440-204	35	53682-2264-090
12	53091-1464-390	36	53708-2289-130

13	53112-1773-405	37	53714-2291-604
14	53137-1726-566	38	53726-2239-239
15	53144-1401-638	39	53762-2361-391
16	53144-1610-249	40	53765-1987-464
17	53147-1676-518	41	53765-2374-060
18	53357-1954-027	42	53786-2356-575
19	53385-1944-120	43	53799-2016-216
20	53386-1943-466	44	53799-2230-566
21	53431-2025-601	45	53816-2219-229
22	53431-2025-637	46	53819-2226-585
23	53436-1950-406	47	53820-2155-011
24	53440-1959-066	48	53820-2227-085

III. DESCRIZIONE DEL LAVORO

I 48 spettri monodimensionali di QSO a nostra disposizione, sono già ridotti ed elaborati secondo le procedure standard. Con IRAF abbiamo visualizzato gli spettri ed eseguito un *fitting*, gaussiano delle righe d'emissione Hβ e [O III] 5007 Å ottenendo la FWHM (*Full Width at Half Maximum*) e il flusso per entrambe. Quindi, dopo aver corretto lo spettro per redshift, abbiamo misurato il flusso medio del continuo a 5100 Å. I dati ottenuti sono riportati in Tab. 1: lunghezza d'onda della riga e FWHM sono espressi in unità di Å mentre il flusso è in unità di 10^{-17} erg cm $^{-2}$ s $^{-1}$.

Tab. 1	Нβ			[O III] 5007Å		
QSO	λ FWHM		Flux	Flux λ		Flux
1	5814	50,3	2200	5983	7,5	651
2	6208	113,0	3464	6379	34,7	608
3	5842	52,0	6756	6014	10,8	982
4	5963	119,8	2761	6149	9,4	1443
5	5965	59,2	5372	6148	10,1	1547
6	5805	100,0	6752	5970	8,3	4572
7	5821	64,2	3166	5994	13,0	1830
8	5882	127,9	2145	6054	11,3	669
9	6211	140,3	3024	6395	8,0	299
10	6328	112,5	2098	6507	15,4	408
11	5618	41,8	7047	5780	12,8	1006
12	5746	44,9	3169	5919	10,0	896
13	7047	50,9	741	7249	23,0	189
14	5803	124,9	5847	5964	42,6	1212
15	5660	47,9	3771	5827	8,0	1599
16	5721	94,3	9100	5888	15,3	2161
17	6254	50,2	2215	6439	11,6	366
18	6499	76,7	2647	6683	13,7	773
19	6167	140,8	2086	6344	13,6	356
20	5496	126,1	7199	5641	20,7	1153
21	5583	69,8	2797	5745	8,4	589
22	5679	69,8	5769	5844	6,1	1438
23	6508	149,0	1207	6697	20,8	416
24	5733	99,4	5020	5899	6,7	3003
25	6300	82,1	2883	6492	42,4	563
26	5445	117,1	2871	5602	8,9	678

27	5940	53,6	6474	6111	11,6	2371
28	5702	80,4	3960	5868	5,9	1384
29	6539	112,9	1423	6716	30,0	271
30	5876	75,9	3761	6050	15,6	2065
31	6208	107,0	2874	6388	18,9	601
32	5988	62,2	3640	6162	8,5	956
33	6004	112,3	5133	6164	29,8	824
34	5589	57,0	3570	5755	9,2	547
35	6164	94,6	1308	6340	14,3	376
36	5815	131,9	11825	5968	35,5	2966
37	6173	53,6	1655	6350	9,6	428
38	5806	59,8	2953	5977	8,0	914
39	5713	60,2	2759	5883	9,3	1537
40	6187	155,2	1628	6363	17,9	304
41	6070	51,0	4194	6246	12,1	784
42	5888	76,4	5015	6065	18,7	1301
43	6333	97,6	3403	6510	20,9	632
44	6322	176,8	3231	6510	24,0	599
45	6042	136,6	3233	6229	10,7	3076
46	5666	80,8	3676	5837	10,6	4140
47	6580	193,0	1745	6760	12,5	222
48	6446	55,2	3181	6623	17,7	501

Calcolato poi il redshift medio z dalle lunghezze d'onda osservate per H β e [O III], sono state ricavate le distanze per i 48 oggetti con l'equazione relativistica

$$d = \frac{c}{H_0} \frac{(1+z)^2 - 1}{(1+z)^2 + 1}$$

Quindi, considerando isotropa l'emissione energetica del QSO, si ricavano la luminosità del continuo a 5100 Å e la luminosità delle righe H β e [O III].

I relativi dati sono in Tab. 2:

Tab. 2	d	L(Hβ)	L(OIII)	L(5100)
QSO	Мрс	Erg/s	erg/s	Erg/s
1	726	1,39E+42	4,12E+41	7,59E+43
2	981	4,00E+42	7,01E+41	1,90E+44
3	746	4,51E+42	6,55E+41	2,40E+44
4	831	2,29E+42	1,19E+42	1,09E+44
5	831	4,45E+42	1,28E+42	1,37E+44
6	719	4,18E+42	2,83E+42	1,82E+44
7	732	2,04E+42	1,18E+42	9,00E+43
8	773	1,54E+42	4,79E+41	7,42E+43
9	987	3,53E+42	3,49E+41	1,83E+44
10	1056	2,81E+42	5,47E+41	1,88E+44
11	588	2,93E+42	4,18E+41	2,42E+44
12	681	1,76E+42	4,98E+41	1,12E+44
13	1457	1,89E+42	4,82E+41	2,32E+44
14	716	3,60E+42	7,46E+41	2,21E+44
15	620	1,74E+42	7,36E+41	8,79E+43
16	662	4,78E+42	1,14E+42	2,47E+44
17	1013	2,73E+42	4,51E+41	1,55E+44

18	1158	4,26E+42	1,24E+42	2,11E+44
19	958	2,29E+42	3,92E+41	1,39E+44
20	495	2,12E+42	3,39E+41	1,01E+44
21	563	1,07E+42	2,24E+41	7,62E+43
22	632	2,77E+42	6,90E+41	1,57E+44
23	1164	1,96E+42	6,77E+41	1,25E+44
24	670	2,70E+42	1,62E+42	1,36E+44
25	1043	3,77E+42	7,35E+41	2,25E+44
26	462	7,36E+41	1,74E+41	5,89E+43
27	811	5,11E+42	1,87E+42	1,75E+44
28	648	2,00E+42	6,98E+41	1,01E+44
29	1179	2,37E+42	4,52E+41	1,26E+44
30	769	2,67E+42	1,47E+42	1,26E+44
31	984	3,34E+42	6,98E+41	1,36E+44
32	843	3,10E+42	8,15E+41	1,85E+44
33	849	4,44E+42	7,13E+41	1,84E+44
34	569	1,39E+42	2,13E+41	7,44E+43
35	955	1,43E+42	4,12E+41	1,08E+44
36	721	7,39E+42	1,85E+42	5,47E+44
37	961	1,83E+42	4,74E+41	1,25E+44
38	721	1,84E+42	5,71E+41	7,37E+43
39	657	1,43E+42	7,97E+41	6,27E+43
40	970	1,84E+42	3,43E+41	1,38E+44
41	896	4,04E+42	7,55E+41	1,62E+44
42	778	3,64E+42	9,45E+41	1,91E+44
43	1058	4,57E+42	8,49E+41	2,02E+44
44	1055	4,32E+42	8,00E+41	2,34E+44
45	882	3,02E+42	2,87E+42	1,51E+44
46	625	1,72E+42	1,94E+42	8,18E+43
47	1203	3,03E+42	3,86E+41	2,27E+44
48	1125	4,83E+42	7,60E+41	3,60E+44

E' stato determinato il raggio della BLR utilizzando la relazione tra R_{BLR} e la luminosità del continuo^[5]:

$$\frac{R_{BLR}}{10 \ lt - days} = (2, 23 \pm 0, 21) \left[\frac{\lambda L_{\lambda} (5100\text{Å})}{10^{44} erg \cdot s^{-1}} \right]^{(0,69 \pm 0,03)}$$

la dispersione delle velocità nell'ipotesi di moto kepleriano casuale delle nubi di gas della BLR, misurando la FWHM della riga d'emissione $H\beta$:

$$v = \frac{FWHM}{\lambda} \cdot c$$

e la massa del SMBH con l'espressione per la massa viriale

$$M_{SMBH} = \frac{R_{BLR} v^2}{G}$$

Tabella 4	R_{BLR}	Δλ=σ (Hβ)	v	M _{SMBH}	M/M _⊚
QSO	parsec	Å	km/s	kg	
1	0,016	44	2248	3,62E+37	1,8E+07
2	0,030	98	4729	3,01E+38	1,5E+08
3	0,035	45	2310	8,46E+37	4,3E+07
4	0,020	104	5219	2,50E+38	1,3E+08
5	0,024	51	2576	7,13E+37	3,6E+07
6	0,029	87	4474	2,62E+38	1,3E+08
7	0,018	56	2867	6,62E+37	3,3E+07
8	0,016	111	5649	2,25E+38	1,1E+08
9	0,029	122	5869	4,53E+38	2,3E+08
10	0,030	97	4619	2,86E+38	1,4E+08
11	0,035	36	1934	5,96E+37	3,0E+07
12	0,021	39	2030	3,86E+37	1,9E+07
13	0,034	44	1877	5,44E+37	2,7E+07
14	0,033	108	5592	4,68E+38	2,4E+08
15	0,018	41	2199	3,83E+37	1,9E+07
16	0,036	82	4283	2,96E+38	1,5E+08
17	0,026	43	2085	5,10E+37	2,6E+07
18	0,032	66	3066	1,36E+38	6,9E+07
19	0,024	122	5932	3,82E+38	1,9E+08
20	0,019	109	5961	3,09E+38	1,6E+08
21	0,016	60	3246	7,57E+37	3,8E+07
22	0,026	60	3191	1,20E+38	6,0E+07
23	0,022	129	5948	3,58E+38	1,8E+08
24	0,024	86	4505	2,18E+38	1,1E+08
25	0,034	71	3386	1,74E+38	8,7E+07
26	0,013	101	5587	1,88E+38	9,4E+07
27	0,028	46	2345	7,02E+37	3,5E+07
28	0,019	70	3661	1,17E+38	5,9E+07
29	0,023	98	4486	2,04E+38	1,0E+08
30	0,023	66	3354	1,15E+38	5,8E+07
31	0,024	93	4478	2,15E+38	1,1E+08
32	0,029	54	2698	9,64E+37	4,8E+07
33	0,029	97	4859	3,11E+38	1,6E+08
34	0,016	49	2651	4,97E+37	2,5E+07
35	0,020	82	3989	1,45E+38	7,3E+07
36	0,062	114	5893	9,71E+38	4,9E+08
37	0,022	46	2256	5,13E+37	2,6E+07
38	0,016	52	2677	5,03E+37	2,5E+07
39	0,014	52	2735	4,70E+37	2,4E+07
40	0,024	134	6517	4,58E+38	2,3E+08
41	0,027	44	2182	5,75E+37	2,9E+07
42	0,030	66	3372	1,54E+38	7,7E+07
43	0,031	85	4004	2,25E+38	1,1E+08
44	0,034	153	7266	8,21E+38	4,1E+08
45	0,026	118	5874	3,98E+38	2,0E+08
46	0,017	70	3706	1,04E+38	5,2E+07
47	0,034	167	7620	8,85E+38	4,4E+08
48	0,047	48	2226	1,04E+38	5,2E+07

IV. RISULTATI

Abbiamo costruito l'istogramma della distribuzione delle masse e il grafico z vs. M/M_{\odot} (Grafici 1 e 2):

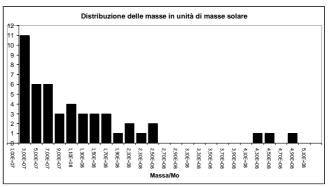


Grafico 1

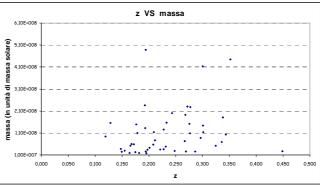
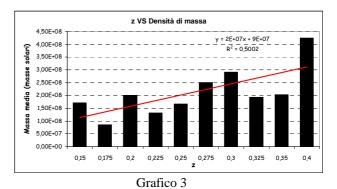



Grafico 2

Nei grafici si evidenzia una distribuzione di massa con una netta prevalenza di masse dell'ordine di 10^7 masse solari ed una proporzionalità diretta tra la massa e il redshift z. Tale proporzionalità può essere messa maggiormente in evidenza costruendo il grafico tra la massa media dei SMBH e l'intervallo di redshift nel quale tale massa media è calcolata (Grafico 3):

L'intervallo di redshift nel quale si collocano i 48 oggetti esaminati non permette di estrapolare tali conclusioni a più alti redshift.

Infine abbiamo studiato la possibile esistenza di una correlazione tra la luminosità del continuo e la luminosità delle righe H β e [O III] 5007 Å ; tale correlazione dovrebbe derivare dai processi fisici di emissione da parte del gas della BLR e della NLR che

vengono eccitati dal flusso del continuo nel disco di accrescimento. I risultati dell'indagine sono riassunti nei grafici 4 e 5:

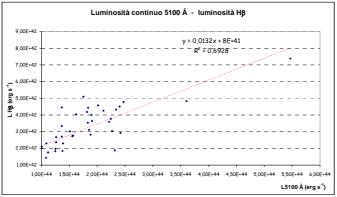


Grafico 4



Grafico 5

Il grafico 4 mostra una elevata correlazione tra le due luminosità, mentre il grafico 5 presenta una dispersione dei dati che non consente alcuna correlazione significativa. Tale risultato può non essere sorprendente visto che la BLR si trova nelle immediate vicinanze del disco di accrescimento mentre la NLR si colloca ad alcune centinaia di parsec dal disco di accrescimento.

Un'analisi più dettagliata degli spettri che abbiamo condotto dopo aver riletto i medesimi tre volte in momenti diversi ottenendo dati che non si discostano mai per più del 10% da quelli prodotti, mostra come vi siano sei dati che non permettono una significativa correlazione continuo - [O III] e questi oggetti presentano spettri dalle caratteristiche simili. Abbiamo inoltre effettuato un'analisi, sempre a partire dall'esame degli spettri, e suddiviso tali spettri in due sottoinsiemi abbastanza omogenei rilevando per questi due sottoinsiemi significativi indici di correlazione tra la luminosità del continuo e quelle di H β e [O III] anche se la dispersione dei dati relativi ad [O III] permane comunque molto elevata.

Bibliografia

[1] UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI

Urry C. M., Padovani P., Publications of the Astronomical Society of the Pacific **107**: 803-845, 1995

[2] REVERBERATION MEASUREMENTS FOR 17 QUASARS AND THE SIZE—MASS—LUMINOSITY RELATIONS IN ACTIVE GALACTIC NUCLEI Kaspi S., Smith P. S., Netzer H., Maoz D., Jannuzi B. T., & Giveon U.

[3] CENTRAL MASSES AND BROAD-LINE REGION SIZES OF ACTIVE GALACTIC NUCLEI: I. COMPARING THE PHOTOIONIZATION AND REVERBERATION TECHNIQUES
A. Wandell, B.M. Peterson and M.A. Malkan

[4] DETERMINING CENTRAL BLACK HOLE MASSES IN DISTANT ACTIVE GALAXIES
M. Vestergaard, The Astrophysical Journal, June 1, 2002

[5] THE RELATIONSHIP BETWEEN LUMINOSITY AND BROAD-LINE REGION SIZE IN ACTIVE GALACTIC NUCLEI
Kaspi S. et al. The Astrophysical Journal, 629: 1-11, 2005