Fotometria *ugriz* dell'ammasso aperto NGC2420

Emma Dalla Benetta, Giulia Raffaelli, Valentina Zausa

Liceo Sperimentale "D. G. Fogazzaro", Vicenza

ABSTRACT

The aim of our experience is to make the photometric study into 3 bands (u, g, r) of the open cluster NGC 2420. This study allows us to determine the magnitude of some stars and consequently to find the color-color and color-magnitude diagrams (as in a typical H-R diagram) of the open cluster NGC2420.

I. INTRODUZIONE

Lo scopo della nostra esperienza è quello di produrre i grafici colore-magnitudine e colore-colore per un ammasso aperto del disco galattico dallo studio fotometrico a 3 filtri u, g, r.

Nel nostro studio abbiamo utilizzato immagini d'archivio di NGC2420 dalla *Sloan Digital Sky Survey* (SDSS). Ricordando inoltre che studiando un ammasso consideriamo stelle che sono tutte alla stessa distanza da noi, saremo in grado di riprodurre un diagramma colore-magnitudine (es. *u*–*g* vs. *u*), il quale è l'equivalente di un classico digramma H-R tipo spettrale - mag assoluta e quindi di confermare che NGC2420 è un ammasso aperto (Fig. 1).

Un ammasso aperto è un aggregato di stelle, da qualche decina sino a poche centinaia, tra loro vicine debolmente legate le una alle altre dalla reciproca attrazione gravitazionale; nella nostra galassia sono più di un migliaio per lo più localizzati nel disco galattico ove, come è noto, il gas interstellare è molto abbondante. Le stelle degli ammassi aperti sono quindi stelle giovani, cosiddette di età zero cioè stelle di sequenza principale: ZAMS (Zero Age Main Sequence).

La nostra indagine si propone proprio di individuare nei diagrammi di NGC2420 i sopraccitati tratti tipici che caratterizzano un insieme di stelle per lo più giovani quali quelle che appartengono a tale tipologia di conglomerato stellare.

Figura 1: L'ammasso aperto NGC2420

II. DATI OSSERVATIVI

La SDSS è un progetto concluso che fornisce dettagliate immagini ottiche che coprono più di un quarto del cielo e una mappa tridimensionale di circa un milione di galassie e quasars. Per tale scopo, la SDSS ha usato un telescopio da 2.5m, situato ad Apache Point nel New Mexico. Le immagini, raccolte su un CCD di 120 megapixel, coprono un'area di cielo pari a circa 8 volte quella della luna piena.

Per l'indagine fotometrica dell'ammasso, abbiamo utilizzato 5 filtri, ciascuno dei quali permette di selezionare solo una porzione dello spettro elettromagnetico della luce.

Le lunghezze d'onda medie per ogni filtro sono le seguenti:

и	<i>g</i> .	r	i	z .
3551Å	4686Å	6165Å	7481Å	8931Å

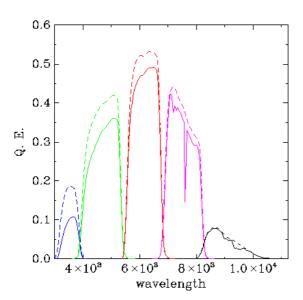


Figura 2: Curve di risposta dei filtri ugriz

La Fig. 2 riproduce nell'ordine le curve di risposta per ciascun filtro (la curva continua include anche l'assorbimento atmosferico attraverso una massa d'aria di 1.3).

NGC2420 è un ammasso aperto osservabile nella costellazione dei Gemelli. Le sue coordinate equatoriali e le principali caratteristiche fotometriche sono riportate nella tabella sottostante.

Ascensione Retta:	7 ^h 38.5 ^m
Declinazione:	+21° 34'
Magnitudine Apparente:	8.3
Diametro Apparente:	10 arcmin

III. DESCRIZIONE DEL LAVORO

Una volta individuato l'ammasso NGC2420 su un'immagine dallo SDSS, abbiamo selezionato, numerandole, 38 stelle.

Per ricavare le magnitudini strumentali di ciascuna stella selezionata, abbiamo utilizzato il programma IRAF (*Image Reduction and Analysis Facility*).

Attorno alle stelle selezionate sulle immagini CCD (*Charged Coupled Device*) della SDSS abbiamo individuato un raggio d'integrazione di 12 pixel all'interno del quale il programma calcola il numero di fotoni che sono stati catturati dal sensore elettronico nel tempo d'esposizione.

Questi fotoni non provengono solo dalla stella ma anche dalla luminosità del cielo notturno.

Per questo motivo abbiamo individuato una corona circolare di raggio maggiore (15-20 pixel) che ci ha

permesso di determinare il numero di fotoni per unità di superficie provenienti dal cielo notturno nel tempo di esposizione e quindi di ottenere per sottrazione il numero netto di fotoni proveniente dalla stella nel tempo d'esposizione.

I valori ottenuti divisi per il tempo di esposizione ci permettono di ricavare la magnitudine che chiameremo strumentale in quanto riferita ai conteggi di fotoni da parte dello strumento di misura. Per arrivare alla magnitudine effettiva (espressa in unità fisiche) bisogna applicare la calibrazione tramite la seguente formula:

$$m = m_0 + m_s - k \cdot x - 25$$

dove:

 m_s = magnitudine strumentale

 m_0 = punto-zero calcolato utilizzando le stelle standard per ogni banda

k = coefficiente di estinzione atmosferica per ogni banda

x = massa d'aria

25= costante additiva applicata arbitrariamente al programma per il calcolo di m_s

Le costanti utilizzate sono riassunte nella tabella sottostante.

	m_0	k	X
и	23,834	0,414	1,062
g	24,447	0,142	1,065
r	24,071	0,090	1,059

Una volta ottenuta la magnitudine effettiva abbiamo calcolato per sottrazione i due indici di colore u–g e g–g

Ricordando che la magnitudine apparente di una stella è proporzionale al $\log(I)$ dove I è l'intensità della luce proveniente dalla stella in quella particolare banda fotometrica, (energia \times lunghezza $^{-2}$ \times tempo $^{-1}$) la differenza tra magnitudini della stessa stella in due diverse bande misura il rapporto tra due intensità diverse caratteristiche dello spettro di quella stella e di tutte le stelle del medesimo tipo spettrale.

Nella tabella sottostante sono riportate le magnitudini nelle 3 bande u g r e i due colori u–g e g–r delle stelle da noi identificate.

N° stella	и	g	r	u-g	g-r
1	15,581	13,593	12,805	1,99	0,79
2	13,098	11,980	11,656	1,12	0,32
3	15,380	13,815	13,215	1,57	0,60
4	14,196	12,963	12,475	1,23	0,49
5	12,828	11,735	11,458	1,09	0,28
6	14,887	13,526	12,982	1,36	0,54

7	12,261	11,140	10,869	1,12	0,27
8	12,468	11,374	11,119	1,09	0,26
9	14,256	12,951	12,512	1,31	0,44
10	14,506	13,071	12,530	1,44	0,54
11	15,170	13,599	13,070	1,57	0,53
12	13,186	12,127	11,788	1,06	0,34
13	11,238	9,961	10,134	1,28	-0,17
14	11,752	10,634	10,403	1,12	0,23
15	16,181	15,150	14,255	1,03	0,90
16	14,487	13,250	12,759	1,24	0,49
17	16,036	14,736	13,860	1,30	0,88
18	13,760	12,683	12,278	1,08	0,41
19	11,538	10,391	10,154	1,15	0,24
20	14,930	13,491	12,938	1,44	0,55
21	16,390	16,245	16,046	0,15	0,20
22	16,329	14,099	12,692	2,23	1,41
23	17,042	14,985	13,980	2,06	1,01
24	13,403	12,260	11,895	1,14	0,37
25	13,335	12,205	11,866	1,13	0,34
26	16,033	14,055	13,387	1,98	0,67
27	11,688	10,578	10,354	1,11	0,22
28	16,522	15,253	14,204	1,27	1,05
29	16,608	15,408	14,429	1,20	0,98
30	12,798	11,699	11,397	1,10	0,30
31	11,915	10,817	10,599	1,10	0,22
32	14,026	12,682	12,183	1,34	0,50
33	13,773	12,629	12,226	1,14	0,40
34	12,280	11,199	10,951	1,08	0,25
35	12,567	11,427	11,092	1,14	0,34
36	16,437	15,465	14,412	0,97	1,05
37	14,046	12,778	12,365	1,27	0,41
38	14,306	13,138	12,703	1,17	0,44

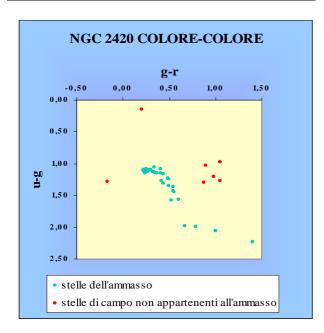


Figura 3: Diagramma colore-colore di NGC2420

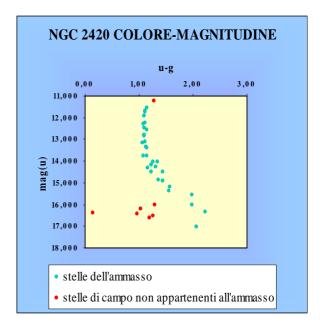


Figura 4: Diagramma colore-magnitudine di NGC2420

Infine abbiamo prodotto i due grafici (Figg. 3 e 4) e colore-colore $(g-r \ vs. \ u-g)$ e colore magnitudine $(u-g \ vs. \ u)$ del nostro ammasso.

In entrambi i grafici abbiamo identificato chiaramente la sequenza principale e anche 7 stelle che probabilmente non appartengono all'ammasso perché non si allineano con le altre.

IV. CONCLUSIONI

I grafici presentati nelle Figg. 3 e 4 mostrano chiaramente stelle appartenenti alla sequenza principale e nessuna stella appartenente al ramo delle giganti. Questo conferma che le stelle di un ammasso aperto sono prevalentemente stelle giovani in quanto essendo debolmente legate gravitazionalmente le une alle altre, esse tendono a disperdersi su tempi di scala di centinaia di milioni di anni. I grafici evidenziano chiaramente anche il turn-off (punto in cui la sequenza principale tende a piegarsi verso il ramo delle giganti), permettendoci quindi di affermare che NGC2420 è tra gli ammassi aperti un ammasso piuttosto vecchio. Il confronto con la letteratura (Lattanzio 1983, Antony-Twarog et al. 1990) conferma le nostre conclusioni.

BIBLIOGRAFIA

SDSS (Sloan Digital Sky Survey, http://www.sdss.org)

Antony-Twarog B.J. et al. 1990, AJ 99, 1504

SEDS - Student for Exploration and Development of Space (http://www.seds.org)

Lattanzio J. 1983, PASAu 5, 232